Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T06:26:41.985Z Has data issue: false hasContentIssue false

Modelling of turbulence modulation in particle- or droplet-laden flows

Published online by Cambridge University Press:  12 July 2012

Daniel W. Meyer*
Affiliation:
Institute of Fluid Dynamics, ETH Zurich, Sonneggstrasse 3, CH-8092 Zürich, Switzerland
*
Email address for correspondence: [email protected]

Abstract

Addition of particles or droplets to turbulent liquid flows or addition of droplets to turbulent gas flows can lead to modulation of turbulence characteristics. Corresponding observations have been reported for very small particle or droplet volume loadings ${\Phi }_{v} $ and therefore may be important when simulating such flows. In this work, a modelling framework that accounts for preferential concentration and reproduces isotropic and anisotropic turbulence attenuation effects is presented. The framework is outlined for both Reynolds-averaged Navier–Stokes (RANS) and joint probability density function (p.d.f.) methods. Validations are performed involving a range of particle and flow-field parameters and are based on the direct numerical simulation (DNS) study of Boivin, Simonin & Squires (J. Fluid Mech., vol. 375, 1998, pp. 235–263) dealing with heavy particles suspended in homogeneous isotropic turbulence (Stokes number $\mathit{St}= O(1{\unicode{x2013}} 10)$, particle/fluid density ratio ${\rho }_{p} / \rho = 2000$, ${\Phi }_{v} = O(1{0}^{- 4} )$) and the experimental investigation of Poelma, Westerweel & Ooms (J. Fluid Mech., vol. 589, 2007, pp. 315–351) involving light particles ($\mathit{St}= O(0. 1)$, ${\rho }_{p} / \rho \gtrsim 1$, ${\Phi }_{v} = O(1{0}^{- 3} )$) settling in grid turbulence. The development in this work is restricted to volume loadings where particle or droplet collisions are negligible.

Type
Papers
Copyright
©2012 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bagchi, P. & Balachandar, S. 2004 Response of the wake of an isolated particle to an isotropic turbulent flow. J. Fluid Mech. 518, 95123.Google Scholar
Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.CrossRefGoogle Scholar
Boivin, M., Simonin, O. & Squires, K. D. 1998 Direct numerical simulation of turbulence modulation by particles in isotropic turbulence. J. Fluid Mech. 375, 235263.CrossRefGoogle Scholar
Boivin, M., Simonin, O. & Squires, K. D. 2000 On the prediction of gas–solid flows with two-way coupling using large eddy simulation. Phys. Fluids 12 (8), 20802090.CrossRefGoogle Scholar
Eaton, J. K. 2006 Turbulence modulation by particles. In Multiphase Flow Handbook (ed. Crowe, C. T.). Taylor and Francis.Google Scholar
Eaton, J. K. 2009 Two-way coupled turbulence simulations of gas-particle flows using point-particle tracking. Intl J. Multiphase Flow 35, 792800.CrossRefGoogle Scholar
Eaton, J. K. & Fessler, J. R. 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flow 20 (1), 169209.CrossRefGoogle Scholar
Elghobashi, S. 1993 On the two-way interaction between homogeneous turbulence and dispersed solid particles. i: turbulence modification. Phys. Fluids A 5 (7), 1790.CrossRefGoogle Scholar
Elghobashi, S. & Truesdell, G. C. 1992 Direct simulation of particle dispersion in a decaying isotropic turbulence. J. Fluid Mech. 242, 655700.CrossRefGoogle Scholar
Eswaran, V. & Pope, S. B. 1988 Direct numerical simulations of the turbulent mixing of a passive scalar. Phys. Fluids 31 (3), 506520.Google Scholar
Fernando, H. J. S. & Choi, Y. J. 2007 Particle Laden Geophysical Flows: from Geophysical to Sub-Kolmogorov Scales. In Particle-Laden Flow: from Geophysical to Kolmogorov Scales (ed. Geurts, B. J., Clercx, H. & Uijttewaal, W.), vol. 11, pp. 407421. Springer.CrossRefGoogle Scholar
Fox, R. O. 2003 Computational Models for Turbulent Reacting Flows. Cambridge University Press.Google Scholar
Fuchs, R., Jenny, P. & Meyer, D. W. 2010 Modelling turbulence modulation in homogeneous isotropic turbulence. Tech. Rep. ETH Zurich.Google Scholar
Gardiner, C. W. 2004 Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 3rd edn. Springer.CrossRefGoogle Scholar
Geiss, S., Dreizler, A., Stojanovic, Z., Chrigui, M., Sadiki, A. & Janicka, J. 2004 Investigation of turbulence modification in a non-reactive two-phase flow. Exp. Fluids 36 (2), 344354.CrossRefGoogle Scholar
He, Z., Liu, Z., Chen, S., Weng, L. & Zheng, C. 2005 Particle behaviour in homogeneous isotropic turbulence. Acta Mechanica Sin. 21 (2), 112120.Google Scholar
Jayesh & Pope, S. B. 1995 Stochastic model for turbulent frequency. Tech. Rep. FDA 95-05. Cornell University.Google Scholar
Jung, J., Yeo, K. & Lee, C. 2008 Behavior of heavy particles in isotropic turbulence. Phys. Rev. E 77 (1), 016307.Google Scholar
Loth, E. 2000 Numerical approaches for motion of dispersed particles, droplets and bubbles. Prog. Energy Combust. Sci. 26, 161223.CrossRefGoogle Scholar
Meyer, D. W. & Jenny, P. 2007 Consistent inflow and outflow boundary conditions for transported probability density function methods. J. Comput. Phys. 226 (2), 18591873.Google Scholar
Minier, J.-P. & Peirano, E. 2001 The p.d.f. approach to turbulent polydispersed two-phase flows. Phys. Rep. 352 (1–3), 1214.CrossRefGoogle Scholar
Minier, J.-P., Peirano, E. & Chibbaro, S. 2004 P.d.f. model based on Langevin equation for polydispersed two-phase flows applied to a bluff-body gas–solid flow. Phys. Fluids 16 (7), 24192431.CrossRefGoogle Scholar
Poelma, C. 2004 Experiments in particle-laden turbulence. Doctoral thesis, Technische Universiteit Delft.Google Scholar
Poelma, C., Westerweel, J. & Ooms, G. 2007 Particle–fluid interactions in grid-generated turbulence. J. Fluid Mech. 589, 315351.Google Scholar
Pope, S. B. 1985 P.d.f. methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11 (2), 119192.CrossRefGoogle Scholar
Pope, S. B. 1994 Lagrangian pdf methods for turbulent flows. Annu. Rev. Fluid Mech. 26, 2363.Google Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Press, W. H. 2001 Numerical Recipes in Fortran 77 the Art of Scientific Computing, 2nd edn.. Cambridge University Press.Google Scholar
Rogers, C. B. & Eaton, J. K. 1991 The effect of small particles on fluid turbulence in a flat-plate, turbulent boundary layer in air. Phys. Fluids A 3 (5), 928937.Google Scholar
Shaw, R. A. 2003 Particle–turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35, 183227.CrossRefGoogle Scholar
Squires, K. D. & Eaton, J. K. 1990 Particle response and turbulence modification in isotropic turbulence. Phys. Fluids A 2 (7), 11911203.Google Scholar
Squires, K. D. & Eaton, J. K. 1991a Measurements of particle dispersion obtained from direct numerical simulations of isotropic turbulence. J. Fluid Mech. 226, 135.Google Scholar
Squires, K. D. & Eaton, J. K. 1991b Preferential concentration of particles by turbulence. Phys. Fluids A 3 (5), 11691178.CrossRefGoogle Scholar
Sundaram, S. & Collins, L. R. 1997 Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations. J. Fluid Mech. 335, 75109.CrossRefGoogle Scholar