Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T12:53:46.308Z Has data issue: false hasContentIssue false

Modelling of noise reduction in complex multistream jets

Published online by Cambridge University Press:  17 November 2017

Dimitri Papamoschou*
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California at Irvine, Irvine, CA 92697-3975, USA
*
Email address for correspondence: [email protected]

Abstract

The paper presents a low-order prediction scheme for the noise change in multistream jets when the nozzle geometry is altered from a known baseline. The essence of the model is to predict the changes in acoustics due to the redistribution of the mean flow as computed by a Reynolds-averaged Navier–Stokes (RANS) solver. A RANS-based acoustic analogy framework is developed that addresses the noise in the polar direction of peak emission and uses the Reynolds stress as a time-averaged representation of the action of the coherent turbulent structures. The framework preserves the simplicity of the Lighthill acoustic analogy, using the free-space Green’s function, while accounting for azimuthal effects via special forms for the space–time correlation combined with source–observer relations based on the Reynolds stress distribution in the jet plume. Results are presented for three-stream jets with offset secondary and tertiary flows that reduce noise in specific azimuthal directions. The model reproduces well the experimental noise reduction trends. Principal mechanisms of noise reduction are elucidated.

Type
JFM Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bateman, H. 1954 Tables of Integral Transforms. McGraw-Hill.Google Scholar
Bauer, A. B., Kibens, V. & Wlezien, R. W.1982 Jet noise suppression by porous plug nozzles. NASA CR 3613.Google Scholar
Brès, G. A., Ham, F. E., Nichols, J. W. & Lele, S. K. 2017 Unstructured large-eddy simulations of supersonic jets. AIAA J. 55 (4), 11641184.Google Scholar
Bridges, J.2006 Effect of heat on space–time correlations in jets. NASA/TM–2006-214381.CrossRefGoogle Scholar
Bridges, J. & Wernet, M. P. 2012 Validating large-eddy simulation for jet aeroacoustics. J. Propul. Power 28 (2), 226234.CrossRefGoogle Scholar
Brown, C. A., Bridges, J. E. & Henderson, B.2011 Offset-stream technology test – summary of results. AIAA Paper 2007-3664.Google Scholar
Chase, J. D., Garzón, G. A. & Papamoschou, D.2013 Directivity effects of shaped plumes from plug nozzles. AIAA Paper 2013-0008.Google Scholar
Depuru Mohan, N. K. & Dowling, A. P. 2016 Jet-noise-prediction model for chevrons and microjets. AIAA J. 54 (12), 39283940.Google Scholar
Doty, M. J. & McLaughlin, D. K. 2005 Space–time correlation measurement of high-speed axisymmetric jets using optical deflectometry. Exp. Fluids 28, 415425.Google Scholar
Dowling, A. P. & Hynes, T. P. 2004 Sound generation by turbulence. Eur. J. Mech. (B/Fluids) 23, 491500.Google Scholar
Fiedler, H. E. 1988 Coherent structures in turbulent flows. Prog. Aerosp. Sci. 25 (3), 231269.Google Scholar
Fleury, V., Bailly, C., Jondeau, E., Michard, M. & Juvé, D. 2008 Space–time correlations in two subsonic jets using dual particle image velocimetry measurements. AIAA J. 46 (10), 24982509.CrossRefGoogle Scholar
Goldstein, M. E. & Leib, S. J. 2008 The aeroacoustic of slowly diverging supersonic jets. J. Fluid Mech. 600, 291337.Google Scholar
Harper-Bourne, M.1999 Jet near-field noise of combat aircraft. AIAA Paper 1999-1838.Google Scholar
Harper-Bourne, M.2002 Predicting the jet near-field noise of combat aircraft. AIAA Paper 2002-2424.Google Scholar
Harper-Bourne, M.2003 Jet noise turbulence measurements. AIAA Paper 2003-3214.Google Scholar
Henderson, B. 2010 Fifty years of fluidic injection for jet noise reduction. Intl J. Aeroacoust. 9 (1 and 2), 91122.Google Scholar
Henderson, B.2012 Aeroacoustics of three-stream jets. AIAA Paper 2012-2159.Google Scholar
Henderson, B., Leib, S. & Wernet, M.2015 Measurements and predictions of the noise from three-stream jets. AIAA Paper 2015-3120.Google Scholar
Ho, C. M.1985 Near field pressure fluctuations in a circular jet. NASA CR-179847.Google Scholar
Huff, D. L. & Henderson, B.2016 The aeroacoustics of offset three-stream jets for future commercial supersonic aircraft. AIAA Paper 2016-2992.CrossRefGoogle Scholar
Jameson, A., Schmidt, W. & Turkel, E.1981 Numerical solutions of the Euler equations by finite volume methods using Runge–Kutta time stepping schemes. AIAA Paper 1981-1259.Google Scholar
Karabasov, S. A., Afsar, M. J., Hynes, T. P., Dowling, A. P., McMullan, W. A., Pokora, C. D., Page, G. J. & McGuirk, J. J. 2010 Jet noise: acoustic analogy informed by large eddy simulation. AIAA J. 48 (7), 13121325.Google Scholar
Kerhervé, F., Fitzpatrick, J. & Kennedy, J. 2010 Determination of two-dimensional space–time correlations in jet flows using simultaneous PIV and LDV measurements. Exp. Therm. Fluid Sci. 34 (7), 788797.Google Scholar
Leib, S. J.2014 Modeling sound propagation through non-axisymmetric jets. NASA/CR-2014-218107.Google Scholar
Lighthill, M. J. 1952 On sound generated aerodynamically: I. General theory. Proc. R. Soc. Lond. 211, 564587.Google Scholar
Lighthill, M. J. 1954 On sound generated aerodynamically. II. Turbulence as a source of sound. Proc. R. Soc. Lond. 222, 132.Google Scholar
Mani, R. 1976 The influence of jet flow on jet noise. Part 1. The noise of unheated jets. J. Fluid Mech. 73 (4), 753778.Google Scholar
Mathieu, J. & Scott, J. 2000 An Introduction to Turbulent Flow, p. 88, 354. Cambridge University Press.Google Scholar
McLaughlin, D. K., Morrison, G. L. & Troutt, R. R. 1975 Experiments on the instability waves in a supersonic jet and their acoustic radiation. J. Fluid Mech. 69, 7395.Google Scholar
Menter, F. R. 1994 Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32 (8), 15981605.Google Scholar
Miller, S. A. E. 2014 Toward a comprehensive model of jet noise using an acoustic analogy. AIAA J. 52 (10), 21432164.Google Scholar
Morris, P. J. & Boluriaan, S.2004 The prediction of jet noise from CFD data. AIAA Paper 2004-2977.Google Scholar
Morris, P. J. & Farassat, F. 2002 Acoustic analogy and alternative theories for jet noise prediction. AIAA J. 40 (4), 671680.Google Scholar
Morris, P. J. & Zaman, K. B. M. Q.2010a Two component velocity correlations in jets and noise source modeling. AIAA Paper 2010-3781.Google Scholar
Morris, P. J. & Zaman, K. B. M. Q. 2010b Velocity measurements in jets with application to jet noise. J. Sound Vib. 329, 394414.Google Scholar
Papamoschou, D. 2004 New method for jet noise reduction in turbofan engines. AIAA J. 42 (11), 22452253.Google Scholar
Papamoschou, D. 2006 Fan flow deflection in simulated turbofan exhaust. AIAA J. 44 (12), 30883097.CrossRefGoogle Scholar
Papamoschou, D. & Debiasi, M. 2001 Directional suppression of noise from a high-speed jet. AIAA J. 39 (3), 380387.Google Scholar
Papamoschou, D. & Phong, V.2017 The very near pressure field of single- and multi-stream jets. AIAA Paper 2017-0230.Google Scholar
Papamoschou, D., Phong, V., Xiong, J. & Liu, F.2016 Quiet nozzle concepts for three-stream jets. AIAA Paper 2016-0523.Google Scholar
Papamoschou, D. & Rostamimonjezi, S.2012 Modeling of noise reduction for turbulent jets with induced asymmetry. AIAA Paper 2012-2158.Google Scholar
Papamoschou, D., Xiong, J. & Liu, F. 2008 Aerodynamics of fan flow deflectors for jet noise suppression. J. Propul. Power 24 (3), 437445.Google Scholar
Papamoschou, D., Xiong, J. & Liu, F.2014 Reduction of radiation efficiency in high-speed jets. AIAA Paper 2014-2619.Google Scholar
Papoulis, A. 1965 Probability, Random Variables, and Stochastic Processes, p. 317. McGraw-Hill.Google Scholar
Phong, V. & Papamoschou, D.2017 Investigation of isolated and installed three-stream jets from offset nozzles. AIAA Paper 2017-0005.Google Scholar
Powers, R. W., McLaughlin, D. K. & Morris, P. J.2015 Noise reduction with fluidic inserts in supersonic jets exhausting over a simulated aircraft carrier deck. AIAA Paper 2015-2374.Google Scholar
Raizada, N. & Morris, P. J.2006 Prediction of noise from high speed subsonic jets using an acoustic analogy. AIAA Paper 2006-2596.Google Scholar
Ribner, H. S. 1969 Quadrupole correlations governing the pattern of jet noise. J. Fluid Mech. 38, 124.Google Scholar
Rimmell, A. N., Mansfield, N. J. & Paddan, G. S. 2015 Design of digital filters for frequency weightings (a and c) required for risk assessment of workers exposed to noise. Industrial Health 53, 2127.Google Scholar
Samimy, M., Kim, J.-H., Kastner, J., Adamovich, I. & Utkin, Y. 2004 Active control of a Mach 0.9 jet for noise mitigation using plasma actuators. AIAA J. 45 (4), 890901.Google Scholar
Shanno, D. F. & Phua, K. H. 1976 Minimization of unconstrained multivariate functions. ACM Trans. Math. Softw. 6 (4), 618622.Google Scholar
Tam, C. K. W. & Auriault, L. 1998 Mean flow refraction effects on sound radiated from localized sources in a jet. J. Fluid Mech. 370, 149174.Google Scholar
Tam, C. K. W. & Burton, D. E. 1984 Sound generation by the instability waves of supersonic flows. Part 2. Axisymmetric jets. J. Fluid Mech. 138, 273295.Google Scholar
Viswanathan, K., Underbrink, J. R. & Brusniak, L. 2011 Space–time correlation measurements in the near field of jets. AIAA J. 49 (8), 15771599.Google Scholar
Wuttke, J. 2012 Laplace–Fourier transform of the stretched exponential function: analytic error bounds, double exponential transform, and open-source implementation “libkww”. Algorithms 5, 604628.Google Scholar
Xiong, J., Nielsen, P., Liu, F. & Papamoschou, D. 2010 Computation of high-speed coaxial jets with fan flow deflection. AIAA J. 48 (10), 22492262.Google Scholar
Zaman, K. B. M. Q. 1986 Flow field and near and far sound field of a subsonic jet. J. Sound Vib. 106 (1), 116.Google Scholar