Published online by Cambridge University Press: 29 March 2006
The mixing layer bounding the exhaust plume associated with hypersonic highaltitude rockets is analysed as a laminar binary mixture of perfect gases with Lewis and Prandtl numbers of unity. A far-field approximation to the undisturbed jet core and a Newtonian pressure balance between the jet and ambient gases are used to construct the mixing-layer location. Longitudinal pressure variations are neglected and resultant errors are evaluated. Boundary conditions at the edge of the mixing layer are evaluated by streamline tracing to shock entry points. The sensitivity of properties in the mixing layer to variations in the plume angle of attack, engine nozzle efficiency and engine thrust are examined, and an approximate density and thrust scaling of mixing-layer overall properties is developed.