Article contents
The mixing layer and its coherence examined from the point of view of two-dimensional turbulence
Published online by Cambridge University Press: 21 April 2006
Abstract
A two-dimensional numerical large-eddy simulation of a temporal mixing layer submitted to a white-noise perturbation is performed. It is shown that the first pairing of vortices having the same sign is responsible for the formation of a continuous spatial longitudinal energy spectrum of slope between k−4 and k−3. After two successive pairings this spectral range extends to more than 1 decade. The vorticity thickness, averaged over several calculations differing by the initial white-noise realization, is shown to grow linearly, and eventually saturates. This saturation is associated with the finite size of the computational domain.
We then examine the predictability of the mixing layer, considering the growth of decorrelation between pairs of flows differing slightly at the first roll-up. The inverse cascade of error through the kinetic energy spectrum is displayed. The error rate is shown to grow exponentially, and saturates together with the levelling-off of the vorticity thickness growth. Extrapolation of these results leads to the conclusion that, in an infinite domain, the two fields would become completely decorrelated. It turns out that the two-dimensional mixing layer is an example of flow that is unpredictable and possesses a broadband kinetic energy spectrum, though composed mainly of spatially coherent structures.
It is finally shown how this two-dimensional predictability analysis can be associated with the growth of a particular spanwise perturbation developing on a Kelvin-Helmholtz billow: this is done in the framework of a one-mode spectral truncation in the spanwise direction. Within this analogy, the loss of two-dimensional predictability would correspond to a return to three-dimensionality and a loss of coherence. We indicate also how a new coherent structure could then be recreated, using an eddy-viscosity assumption and the linear instability of the mean inflexional shear.
- Type
- Research Article
- Information
- Copyright
- © 1988 Cambridge University Press
References
- 108
- Cited by