Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T22:20:27.391Z Has data issue: false hasContentIssue false

Minimal seeds for shear flow turbulence: using nonlinear transient growth to touch the edge of chaos

Published online by Cambridge University Press:  29 May 2012

Chris C. T. Pringle*
Affiliation:
Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
Ashley P. Willis
Affiliation:
School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK
Rich R. Kerswell
Affiliation:
Department of Mathematics, University of Bristol, Bristol BS8 1TW, UK
*
Email address for correspondence: [email protected]

Abstract

We propose a general strategy for determining the minimal finite amplitude disturbance that triggers transition to turbulence in shear flows. This involves constructing a variational problem that searches over all disturbances of fixed initial amplitude which respect the boundary conditions, incompressibility and the Navier–Stokes equations, to maximize a chosen functional over an asymptotically long time period. The functional must be selected such that it identifies turbulent velocity fields by taking significantly enhanced values compared to those for laminar fields. We illustrate this approach using the ratio of the final to initial perturbation kinetic energies (energy growth) as the functional and the energy norm to measure amplitudes in the context of pipe flow. Our results indicate that the variational problem yields a smooth converged solution provided that the initial amplitude is below the threshold for transition. This optimal is the nonlinear analogue of the well-studied (linear) transient growth optimal. At the critical threshold, the optimization seeks out a disturbance that is on the ‘edge’ of turbulence during the period. Above this threshold, when disturbances trigger turbulence by the end of the period, convergence is then practically impossible. The first disturbance found to trigger turbulence as the amplitude is increased identifies the ‘minimal seed’ for the given geometry and forcing (Reynolds number). We conjecture that it may be possible to select a functional such that the converged optimal below threshold smoothly converges to the minimal seed at threshold. Our choice of the energy growth functional is shown to come close to this for the pipe flow geometry investigated here.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Andersson, P., Berggren, M. & Henningson, D. S. 1999 Optimal disturbances and bypass transition in boundary layers. Phys. Fluids 11, 134150.CrossRefGoogle Scholar
2. Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids 4, 16371650.CrossRefGoogle Scholar
3. Cherubini, S., De Palma, P., Robinet, J.-C. & Bottaro, A. 2010 Rapid path to transition via nonlinear localized optimal perturbations in a boundary-layer flow. Phys. Rev. E 82, 066302.CrossRefGoogle Scholar
4. Cherubini, S., De Palma, P., Robinet, J.-C. & Bottaro, A. 2011 The minimal seed of turbulent transition in the boundary layer. J. Fluid Mech. 689, 221253.CrossRefGoogle Scholar
5. Corbett, P. & Bottaro, A. 2000 Optimal perturbations for boundary layers subject to streamwise pressure gradient. Phys. Fluids 12, 120130.Google Scholar
6. Duguet, Y., Brandt, L. & Larsson, B. R. J. 2010a Towards minimal perturbations in transitional plane Couette flow. Phys. Rev. E 82, 026316.Google Scholar
7. Duguet, Y., Willis, A. P. & Kerswell, R. R. 2010b Slug genesis in cylindrical pipe flow. J. Fluid Mech. 663, 180208.CrossRefGoogle Scholar
8. Duguet, Y., Willis, A. P. & Kerswell, R. R. 2008 Transition in pipe flow: the saddle structure on the boundary of turbulence. J. Fluid Mech. 613, 255274.CrossRefGoogle Scholar
9. Eggels, J. G. M., Unger, F., Weiss, M. H., Westerweel, J., Adrian, R. J., Friedrich, R. & Nieuwstadt, F. T. M. 1994 Fully developed turbulence pipe flow: a comparison between direct numerical simulation and experiment. J. Fluid Mech. 268, 175209.CrossRefGoogle Scholar
10. Farrell, B. F. & Ioannou, P. J. 1993 Optimal excitation of three-dimensional perturbations in viscous constant shear flow. Phys. Fluids 5, 13901400.CrossRefGoogle Scholar
11. Gustavsson, L. H. 1991 Energy growth of three-dimensional disturbances in plane Poiseuille flow. J. Fluid Mech. 224, 241260.CrossRefGoogle Scholar
12. Itano, T. & Toh, S. 2001 The dynamics of bursting process in wall turbulence. J. Phys. Soc. Japan 70, 703716.CrossRefGoogle Scholar
13. Kerswell, R. R. & Tutty, O. R. 2007 Recurrence of travelling waves in transitional pipe flow. J. Fluid Mech. 584, 69102.CrossRefGoogle Scholar
14. Luchini, P. 2000 Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations. J. Fluid Mech. 404, 289309.CrossRefGoogle Scholar
15. Luchini, P. & Bottaro, A. 1998 Görtler vortices: a backward-in-time approach to the receptivity problem. J. Fluid Mech. 363, 123.CrossRefGoogle Scholar
16. Mellibovsky, F., Meseguer, A., Schneider, T. M. & Eckhardt, B. 2009 Transition in localized pipe flow turbulence. Phys. Rev. Lett. 103, 054502.CrossRefGoogle ScholarPubMed
17. Meseguer, A. & Trefethen, L. N. 2003 Linearized pipe flow to Reynolds number . J. Comput. Phys. 186, 178197.CrossRefGoogle Scholar
18. Monokrousos, A., Bottaro, A., Brandt, L., Di Vita, A. & Henningson, D. S. 2011 Nonequilibrium thermodynamics and the optimal path to turbulence in shear flows. Phys. Rev. Lett. 106, 134502.CrossRefGoogle ScholarPubMed
19. Orr, W. M. F. 1907 The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part I. A perfect liquid. Part II. A viscous liquid. Proc. R. Irish Acad. A 27, 9138.Google Scholar
20. Peixinho, J. & Mullin, T. 2007 Finite-amplitude thresholds for transition in pipe flow. J. Fluid Mech. 582, 169178.CrossRefGoogle Scholar
21. Pringle, C. C. T., Duguet, Y. & Kerswell, R. R. 2009 Highly symmetric travelling waves in pipe flow. Phil. Trans. R. Soc. A 367, 457472.Google Scholar
22. Pringle, C. C. T. & Kerswell, R. R. 2007 Asymmetric, helical and mirror-symmetric travelling waves in pipe flow. Phys. Rev. Lett. 99, 074502.Google Scholar
23. Pringle, C. C. T. & Kerswell, R. R. 2010 Using nonlinear transient growth to construct the minimal seed for shear flow turbulence. Phys. Rev. Lett. 105, 154502 (referred to as PK10 in the text).CrossRefGoogle ScholarPubMed
24. Reddy, S. C. & Henningson, D. S. 1993 Energy growth in viscous channel flows. J. Fluid Mech. 252, 209238.Google Scholar
25. Reddy, S. C., Schmid, P. J., Baggett, J. S. & Henningson, D. S. 1998 On the stability of streamwise streaks and transition thresholds in plane channel flows. J. Fluid Mech. 365, 269303.CrossRefGoogle Scholar
26. Schmid, P. J. & Henningson, D. S. 1994 Optimal energy growth in Hagen–Poiseuille flow. J. Fluid Mech. 277, 197.Google Scholar
27. Schneider, T. M. & Eckhardt, B. 2009 Edge states intermediate between laminar and turbulent dynamics in pipe flow. Phil. Trans. R. Soc. A 367, 577587.CrossRefGoogle ScholarPubMed
28. Schneider, T. M., Eckhardt, B. & Yorke, J. A. 2007 Turbulence transition and the edge of chaos in pipe flow. Phys. Rev. Lett. 99, 034502.CrossRefGoogle ScholarPubMed
29. Schneider, T. M., Marinc, D. & Eckhardt, B. 2010 Localized edge states nucleate turbulence in extended plane Couette cells. J. Fluid Mech. 646, 441451.CrossRefGoogle Scholar
30. Skufca, J. D., Yorke, J. A. & Eckhardt, B. 2006 Edge of chaos in a parallel shear flow. Phys. Rev. Lett. 96, 174101.CrossRefGoogle Scholar
31. Trefethen, L. N., Trefethen, A. E. & Reddy, S. C. 1993 Hydrodynamic stability without eigenvalues. Science 261, 578584.CrossRefGoogle ScholarPubMed
32. Viswanath, D. & Cvitanovic, P. 2009 Stable manifolds and the transition to turbulence in pipe flow. J. Fluid Mech. 617, 215233.CrossRefGoogle Scholar
33. Willis, A. P. & Kerswell, R. R. 2009 Turbulent dynamics of pipe flow captured in a reduced model: puff relaminarization and localized ‘edge’ states. J. Fluid Mech. 619, 213233.Google Scholar
34. Zuccher, S., Luchini, P. & Bottaro, A. 2004 Algebraic growth in a Blasius boundary layer: optimal and robust control by mean suction in the nonlinear regime. J. Fluid Mech. 513, 135160.Google Scholar