Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T11:39:25.910Z Has data issue: false hasContentIssue false

Microstreaming induced by acoustically trapped, non-spherically oscillating microbubbles

Published online by Cambridge University Press:  22 July 2019

S. Cleve*
Affiliation:
Univ Lyon, École Centrale de Lyon, INSA de Lyon, CNRS, LMFA UMR 5509, F-69134 Écully CEDEX, France Univ Lyon, Université Lyon 1, Centre Léon Bérard, INSERM, LabTAU, F-69003 Lyon, France
M. Guédra
Affiliation:
Univ Lyon, Université Lyon 1, Centre Léon Bérard, INSERM, LabTAU, F-69003 Lyon, France
C. Mauger
Affiliation:
Univ Lyon, École Centrale de Lyon, INSA de Lyon, CNRS, LMFA UMR 5509, F-69134 Écully CEDEX, France
C. Inserra
Affiliation:
Univ Lyon, Université Lyon 1, Centre Léon Bérard, INSERM, LabTAU, F-69003 Lyon, France
P. Blanc-Benon
Affiliation:
Univ Lyon, École Centrale de Lyon, INSA de Lyon, CNRS, LMFA UMR 5509, F-69134 Écully CEDEX, France
*
Email address for correspondence: [email protected]

Abstract

While numerous theoretical studies exist on microstreaming around acoustically excited, trapped gas bubbles, experimental approaches have mainly been conducted for bubbles attached to a solid boundary. One of the main difficulties lies in the positional stability of the microbubble. In the present work we trigger surface modes by bubble coalescence, with the advantage of limiting translational instabilities and controlling the orientation of the axisymmetric deformation. Furthermore, streaming is visualised by fluorescent tracer particles. In this way, bubble dynamics and streaming patterns can be studied together. Different types of streaming patterns are observed and correlated to the respective mode number. Besides the mode number, the bubble size and the phase difference between modal components are identified as important parameters in the definition of the pattern type.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, D., Ozcelik, A., Bojanala, N., Nama, N., Upadhyay, A., Chen, Y., Hanna-Rose, W. & Huang, T. J. 2016 Rotational manipulation of single cells and organisms using acoustic waves. Nature Communications 7, 11085.10.1038/ncomms11085Google Scholar
Ben Haj Slama, R., Gilles, B., Chiekh, M. B. & Béra, J. C. 2017 PIV for the characterization of focused field induced acoustic streaming: seeding particle choice evaluation. Ultrasonics 76, 217226.Google Scholar
Bertin, N., Spelman, T. A., Stephan, O., Gredy, L., Bouriau, M., Lauga, E. & Marmottant, P. 2015 Propulsion of bubble-based acoustic microswimmers. Phys. Rev. A 4 (6), 064012.Google Scholar
Brenner, M. P., Lohse, D. & Dupont, T. F. 1995 Bubble shape oscillations and the onset of sonoluminescence. Phys. Rev. Lett. 75, 954.10.1103/PhysRevLett.75.954Google Scholar
Cleve, S., Guédra, M., Inserra, C., Mauger, C. & Blanc-Benon, P. 2018a Surface modes with controlled axisymmetry triggered by bubble coalescence in a high-amplitude acoustic field. Phys. Rev. E 98, 033115.Google Scholar
Cleve, S., Guédra, M., Mauger, C., Inserra, C. & Blanc-Benon, P. 2018b Experimental investigation of microstreaming induced by free nonspherically oscillating microbubbles. In Proceedings of Meetings on Acoustics 21ISNA, vol. 34. ASA.Google Scholar
Collis, J., Manasseh, R., Liovic, P., Tho, P., Ooi, A., Petkovic-Duran, K. & Zhu, Y. 2010 Cavitation microstreaming and stress fields created by microbubbles. Ultrasonics 50 (2), 273279.Google Scholar
Coussios, C. C. & Roy, R. A. 2008 Applications of acoustics and cavitation to noninvasive therapy and drug delivery. Annu. Rev. Fluid Mech. 40, 395420.10.1146/annurev.fluid.40.111406.102116Google Scholar
Davidson, B. J. & Riley, N. 1971 Cavitation microstreaming. J. Sound Vib. 15, 217233.Google Scholar
Doinikov, A. A. & Bouakaz, A. 2010 Acoustic microstreaming around a gas bubble. J. Acoust. Soc. Am. 127, 703709.10.1121/1.3279793Google Scholar
Doinikov, A. A., Cleve, S., Regnault, G., Mauger, C. & Inserra, C. 2019a Acoustic microstreaming produced by nonspherical oscillations of a gas bubble. I. Case of modes 0 and m. Phys. Rev. E (submitted).Google Scholar
Doinikov, A. A., Cleve, S., Regnault, G., Mauger, C. & Inserra, C. 2019b Acoustic microstreaming produced by nonspherical oscillations of a gas bubble. II. Case of modes 1 and m. Phys. Rev. E (submitted).Google Scholar
Elder, S. A. 1959 Cavitation microstreaming. J. Acoust. Soc. Am. 31, 5464.10.1121/1.1907611Google Scholar
Eller, A. 1968 Force on a bubble in a standing acoustic wave. J. Acoust. Soc. Am. 43, 170171.10.1121/1.1910755Google Scholar
Francescutto, A. & Nabergoj, R. 1978 Pulsation amplitude threshold for surface waves on oscillating bubbles. Acta Acust. 41, 215220.Google Scholar
Gormley, G. & Wu, J. 1998 Observation of acoustic streaming near Albunex® spheres. J. Acoust. Soc. Am. 104, 31153118.10.1121/1.423903Google Scholar
Guédra, M., Cleve, S., Mauger, C., Blanc-Benon, P. & Inserra, C. 2017 Dynamics of nonspherical microbubble oscillations above instability threshold. Phys. Rev. E 96, 063104.Google Scholar
Guédra, M. & Inserra, C. 2018 Bubble shape oscillations of finite amplitude. J. Fluid Mech. 857, 681703.10.1017/jfm.2018.768Google Scholar
Guédra, M., Inserra, C., Gilles, B. & Mauger, C. 2016 Periodic onset of bubble shape instabilities and their influence on the spherical mode. In Ultrasonics Symposium (IUS), 2016 IEEE International, pp. 14. IEEE.Google Scholar
Guédra, M., Inserra, C., Mauger, C. & Gilles, B. 2016 Experimental evidence of nonlinear mode coupling between spherical and nonspherical oscillations of microbubbles. Phys. Rev. E 94, 053115.Google Scholar
Keller, J. B. & Miksis, M. 1980 Bubble oscillations of large amplitude. J. Acoust. Soc. Am. 68, 628633.10.1121/1.384720Google Scholar
Kolb, J. & Nyborg, W. L. 1956 Small-scale acoustic streaming effects in liquids. J. Acoust. Soc. Am. 26, 12371242.Google Scholar
Lee, C. P. & Wang, T. G. 1990 Outer acoustic streaming. J. Acoust. Soc. Am. 88, 23672375.10.1121/1.400079Google Scholar
Leong, T., Collis, J., Manasseh, R., Ooi, A., Novell, A., Bouakaz, A., Ashokkumar, M. & Kentish, S. 2011 The role of surfactant headgroup, chain length, and cavitation microstreaming on the growth of bubbles by rectified diffusion. J. Phys. Chem. C 115, 2431024316.10.1021/jp208862pGoogle Scholar
Liu, R. H., Yang, J., Pindera, M. Z., Athavale, M. & Grodzinski, P. 2002 Bubble-induced acoustic micromixing. Lab on a Chip 2, 151157.Google Scholar
Longuet-Higgins, M. S. 1998 Viscous streaming from an oscillating spherical bubble. Proc. R. Soc. Lond. A 454, 725742.Google Scholar
Maksimov, A. O. 2007 Viscous streaming from surface waves on the wall of acoustically-driven gas bubbles. Eur. J. Mech. (B/Fluids) 26, 2842.Google Scholar
Maksimov, A. O. & Leighton, T. G. 2012 Pattern formation on the surface of a bubble driven by an acoustic field. Proc. R. Soc. Lond. A 468, 5775.Google Scholar
Marmottant, P. & Hilgenfeldt, S. 2003 Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 423, 153156.Google Scholar
Marmottant, P., Raven, J. P., Gardeniers, H., Bomer, J. G. & Hilgenfeldt, S. 2006a Microfluidics with ultrasound-driven bubbles. J. Fluid Mech. 568, 109118.10.1017/S0022112006002746Google Scholar
Marmottant, P., Versluis, M., de Jong, N., Hilgenfeldt, S. & Lohse, D. 2006b High-speed imaging of an ultrasound-driven bubble in contact with a wall: “Narcissus” effect and resolved acoustic streaming. Exp. Fluids 41, 147153.Google Scholar
Mekki-Berrada, F., Combriat, T., Thibault, P. & Marmottant, P. 2016 Interactions enhance the acoustic streaming around flattened microfluidic bubbles. J. Fluid Mech. 797, 851873.10.1017/jfm.2016.289Google Scholar
Minnaert, M. 1933 XVI. On musical air-bubbles and the sounds of running water. Phil. Mag. Sci. 16, 235248.10.1080/14786443309462277Google Scholar
Nyborg, W. L. 1958 Acoustic streaming near a boundary. J. Acoust. Soc. Am. 30, 329339.10.1121/1.1909587Google Scholar
Rednikov, A. Y., Zhao, H., Sadhal, S. S. & Trinh, E. H. 2006 Steady streaming around a spherical drop displaced from the velocity antinode in an acoustic levitation field. Q. J. Mech. Appl. Maths 59, 377397.Google Scholar
Riley, N. 1966 On a sphere oscillating in a viscous fluid. Q. J. Mech. Appl. Maths 19, 461472.10.1093/qjmam/19.4.461Google Scholar
Shaw, S. J. 2006 Translation and oscillation of a bubble under axisymmetric deformation. Phys. Fluids 18, 072104.10.1063/1.2227047Google Scholar
Shklyaev, S. & Straube, A. V. 2008 Linear oscillations of a compressible hemispherical bubble on a solid substrate. Phys. Fluids 20, 052102.10.1063/1.2918728Google Scholar
Spelman, T. A. & Lauga, E. 2017 Arbitrary axisymmetric steady streaming: flow, force and propulsion. J. Engng Maths 105, 3165.10.1007/s10665-016-9880-8Google Scholar
Tho, P., Manasseh, R. & Ooi, A. 2007 Cavitation microstreaming patterns in single and multiple bubble systems. J. Fluid Mech. 576, 191233.10.1017/S0022112006004393Google Scholar
Verraes, T., Lepoint-Mullie, F., Lepoint, T. & Longuet-Higgins, M. S. 2000 Experimental study of the liquid flow near a single sonoluminescent bubble. J. Acoust. Soc. Am. 108, 117125.10.1121/1.429449Google Scholar
Versluis, M., Goertz, D.E., Palanchon, P., Heitman, I.L., van der Meer, S.M., Dollet, B., de Jong, N. & Lohse, D. 2010 Microbubble shape oscillations excited through ultrasonic parametric driving. Phys. Rev. E 82, 026321.Google Scholar
Wu, J. & Du, G. 1997 Streaming generated by a bubble in an ultrasound field. J. Acoust. Soc. Am. 101, 18991907.Google Scholar

Cleve et al. supplementary movie 1

Bubble dynamics of a bubble oscillating with a predominant mode 2 (radius R0 = 46.9 μm at acoustic pressure pa = 20.6 kPa). This case is presented in figure 4 in the main document, the corresponding microstreaming can be found in movie 2. For reasons of document size the video is limited to 40 images and furthermore compress to jpeg format. The created avi-document is played with a frame rate of 8 frames per second. Further parameters are: driving frequency - 31.25 kHz, sampling frequency - 180.064 kHz, frame size - 128 pixel × 128 pixel (0.256 mm × 0.256 mm).

Download Cleve et al. supplementary movie 1(Video)
Video 131.6 KB

Cleve et al. supplementary movie 2

Microstreaming of a bubble oscillating with a predominant mode 2 (radius R0 = 46.9 μm at acoustic pressure pa = 20.6 kPa). This case is presented in figure 4 in the main document, the corresponding bubble dynamics can be found in movie 1. For reasons of document size the video is limited to 40 images and furthermore compress to jpeg format. The created avi-document is played with a frame rate of 8 frames per second. Further parameters are: driving frequency - 31.25 kHz, sampling frequency - 400 Hz, frame size - 1024 pixel × 768 pixelpixel (2.048 mm × 1.536 mm).

Download Cleve et al. supplementary movie 2(Video)
Video 12.1 MB

Cleve et al. supplementary movie 3

Bubble dynamics of a bubble oscillating with a predominant mode 3 (radius R0 = 70.5 μm at acoustic pressure pa = 12.8 kPa). This case is presented in figure 5 in the main document, the corresponding microstreaming can be found in movie 4. For reasons of document size the video is limited to 40 images and furthermore compressed to jpeg format. The created avi-document is played with a frame rate of 8 frames per second. Further parameters are: driving frequency - 31.25 kHz, sampling frequency - 180.064 kHz, frame size - 128 pixel × 128 pixel (0.256 mm × 0.256 mm).

Download Cleve et al. supplementary movie 3(Video)
Video 132.1 KB

Cleve et al. supplementary movie 4

Microstreaming of a bubble oscillating with a predominant mode 3 (radius R0 = 70.5 μm at acoustic pressure pa = 12.8 kPa). This case is presented in figure 5 in the main document, the corresponding bubble dynamics can be found in movie 3. For reasons of document size the video is limited to 40 images and furthermore compressed to jpeg format. The created avi-document is played with a frame rate of 8 frames per second. Further parameters are: driving frequency - 31.25 kHz, sampling frequency - 600 Hz, frame size - 1024 pixel × 768 pixelpixel (2.048 mm × 1.536 mm).

Download Cleve et al. supplementary movie 4(Video)
Video 11 MB

Cleve et al. supplementary movie 5

Bubble dynamics of a bubble oscillating with a predominant mode 4 (radius R0 = 55.7 μm at acoustic pressure pa = 23.6 kPa). This case is presented in figure 6 in the main document, the corresponding microstreaming can be found in movie 6. For reasons of document size the video is limited to 40 images and furthermore compressed to jpeg format. The created avi-document is played with a frame rate of 8 frames per second. Further parameters are: driving frequency - 31.25 kHz, sampling frequency - 180.064 kHz, frame size - 128 pixel × 128 pixel (0.256 mm × 0.256 mm).

Download Cleve et al. supplementary movie 5(Video)
Video 138.3 KB

Cleve et al. supplementary movie 6

Microstreaming of a bubble oscillating with a predominant mode 4 (radius R0 = 55.7 μm at acoustic pressure pa = 23.6 kPa). This case is presented in figure 6 in the main document, the corresponding bubble dynamics can be found in movie 5. For reasons of document size the video is limited to 40 images and furthermore compressed to jpeg format. The created avi-document is played with a frame rate of 8 frames per second. Further parameters are: driving frequency - 31.25 kHz, sampling frequency - 400 Hz, frame size - 1024 pixel × 768 pixelpixel (2.048 mm × 1.536 mm).

Download Cleve et al. supplementary movie 6(Video)
Video 11.7 MB