Published online by Cambridge University Press: 12 April 2006
High-frequency fluctuations in temperature and velocity were measured at a height of 2 m above a harvested, nearly level field of rye grass. Conditions were both stably and unstably stratified. Reynolds numbers ranged from 370000 to 740000. Measurements of velocity were made with a hot-wire anemometer and measurements of temperature with a platinum resistance element which had a diameter of 0[sdot ]5 μm and a length of 1 mm. Thirteen runs ranging in length from 78 to 238 s were analysed.
Spectra of velocity fluctuations are consistent with previously reported universal forms. Spectra of temperature, however, exhibit an increase in slope with increasing wavenumber as the maximum in the one-dimensional dissipation spectrum is approached. The peak of the one-dimensional dissipation spectrum for temperature fluctuations occurs at a higher wavenumber than that of simultaneous spectra of the dissipation of velocity fluctuations. It is suggested that the change in slope of the temperature spectra and the dissimilarity between temperature and velocity spectra may be due to spatial dissimilarity in the dissipation of temperature and velocity fluctuations. The temperature spectra are compared with a theoretical prediction for fluids with large Prandtl number, due to Batchelor (1959). Even though air has a Prandtl number of 0[sdot ]7, the observations are in qualitative agreement with predictions of the theory. The non-dimensional wavenumber at which the increase in slope occurs is about 0[sdot ]02, in good agreement with observations in the ocean reported by Grant et al. (1968).
For the two runs for which the stratification was stable, the normalized spectra of the temperature derivative fall on average slightly below the mean of the spectra of the remaining runs in the range in which the slope is approximately one-third. Hence the Reynolds number may not have always been sufficiently high to satisfy completely the conditions for an inertial subrange.
Universal inertial-subrange constants were directly evaluated from one-dimensional dissipation spectra and found to be 0[sdot ]54 and 1[sdot ]00 for velocity and temperature, respectively. The constant for velocity is consistent with previously reported values, while the value for temperature differs from some of the previous direct estimates but is only 20% greater than the mean of the indirect estimates. This discrepancy may be explained by the neglect in the indirect estimates of the divergence terms in the conservation equation for the variance of temperature fluctuations. There is weak evidence that the one-dimensional constant, and hence the temperature spectra, may depend upon the turbulence Reynolds number, which varied from 1200 to 4300 in the observations reported.