Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-30T19:56:39.358Z Has data issue: false hasContentIssue false

Mechanics of bluff body drag reduction during transient near-wake reversals

Published online by Cambridge University Press:  04 May 2020

Y. Haffner*
Affiliation:
Institut Pprime – UPR 3346, CNRS-ENSMA-Université de Poitiers, Département Fluides Thermique et Combustion, 86360Futuroscope-Chasseneuil, France
J. Borée
Affiliation:
Institut Pprime – UPR 3346, CNRS-ENSMA-Université de Poitiers, Département Fluides Thermique et Combustion, 86360Futuroscope-Chasseneuil, France
A. Spohn
Affiliation:
Institut Pprime – UPR 3346, CNRS-ENSMA-Université de Poitiers, Département Fluides Thermique et Combustion, 86360Futuroscope-Chasseneuil, France
T. Castelain
Affiliation:
UDL, Université Claude Bernard Lyon I, Ecole Centrale de Lyon, INSA Lyon, CNRS-LMFA UMR 5509, 69100Villeurbanne, France
*
Email address for correspondence: [email protected]

Abstract

A combination of passive and active methods is used to manipulate the symmetry of the turbulent wake of an Ahmed body. Dedicated experiments to study the wake reversals occurring between symmetry-breaking states are performed. We show how transient symmetric states explored during the reversals differ from static symmetry-breaking states in the flow organization they induce. In asymmetric states, a strong interaction and coupling between the recirculating flow from one side and the shear layer from opposite side triggers shear-layer instabilities and their amplification. The resulting large-scale flow engulfment in the recirculation region increases the recirculation intensity and thus increases base drag. By contrast, during the wake reversals the disorganization of the recirculating flow leads to a transient symmetric state with prevented shear-layer interaction and triggering mechanism with a concomitant drag reduction of ${\sim}8\,\%$ compared to symmetry-breaking states. Finally, recent experimental results for unbalanced wakes and methodologies addressing the control of wake asymmetries for drag reduction are discussed and interpreted based on the present findings. This leads us to provide new insights in control methods for wake asymmetries.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, S. R., Ramn, G. & Faltin, G.1984 Some salient features of the time averaged ground vehicle wake. Tech. Rep. 840300. Society of Automotive Engineers, Inc.CrossRefGoogle Scholar
Balachandar, S., Mittal, R. & Najjar, F. M. 1997 Properties of the mean recirculation region in the wakes of two-dimensional bluff bodies. J. Fluid Mech. 351, 167199.CrossRefGoogle Scholar
Barros, D.2015 Wake and drag manipulation of a bluff body using periodic fluidic forcing. PhD thesis, Ecole Nationale Supérieure de Mécanique et d’Aérotechnique (ENSMA).Google Scholar
Barros, D., Borée, J., Cadot, O., Spohn, A. & Noack, B. R. 2017 Forcing symmetry exchanges and flow reversals in turbulent wakes. J. Fluid Mech. 829, R1.CrossRefGoogle Scholar
Barros, D., Borée, J., Noack, B. R., Spohn, A. & Ruiz, T. 2016 Bluff body drag manipulation using pulsed jets and coanda effect. J. Fluid Mech. 805, 422459.CrossRefGoogle Scholar
Bearman, P. W. 1965 Investigation of the flow behind a two-dimensional model with a blunt trailing edge and fitted with splitter plates. J. Fluid Mech. 21, 241255.CrossRefGoogle Scholar
Bearman, P. W. 1967 The effect of base bleed on the flow behind a two-dimensional model with a blunt trailing-edge. Aeronaut. Q. 18, 207224.CrossRefGoogle Scholar
Bearman, P. W. & Zdravkovich, M. M. 1978 Flow around circular cylinder near a plane boundary. J. Fluid Mech. 89, 3347.CrossRefGoogle Scholar
Berger, E., Scholz, D. & Schumm, M. 1990 Coherent vortex structures in the wake of a sphere and a circular disk at rest and under forced vibrations. J. Fluids Struct. 4, 231257.CrossRefGoogle Scholar
Bohorquez, P., Sanmiguel-Rojas, E., Sevilla, A., Jiménez-González, J. I. & Martínez-Bazán, C. 2011 Stability and dynamics of the laminar wake past a slender blunt-based axisymmetric body. J. Fluid Mech. 676, 110144.CrossRefGoogle Scholar
Bonnavion, G.2018 Dynamics of the unstable wake modes in automotive aerodynamics: from simplified models to real vehicles. PhD thesis, Ecole Nationale Supérieure de Techniques Avancées (ENSTA), Université Paris-Saclay.Google Scholar
Bonnavion, G. & Cadot, O. 2018 Unstable wake dynamics of rectangular flat-backed bluff bodies with inclination and ground proximity. J. Fluid Mech. 854, 196232.CrossRefGoogle Scholar
Bouchet, G., Mebarek, M. & Dušek, J. 2006 Hydrodynamic forces acting on a rigid fixed sphere in early transitional regimes. Eur. J. Mech. (B/Fluids) 25, 321336.CrossRefGoogle Scholar
Brackston, R. D., de la Cruz, J. M. G., Wynn, A., Rigas, G. & Morrison, J. F. 2016 Stochastic modelling and feedback control of bistability in a turbulent bluff body wake. J. Fluid Mech. 802, 726749.CrossRefGoogle Scholar
Bradshaw, P. 1969 The analogy between streamline curvature and buoyancy in turbulent shear flow. J. Fluid Mech. 36, 177191.CrossRefGoogle Scholar
Bradshaw, P.1973 Effects of streamline curvature on turbulent flow, Tech. Rep.. DTIC Document.Google Scholar
Bridges, T. J. & Morris, P. J. 1984 Differential eigenvalue problems in which the parameter appears nonlinearly. J. Comput. Phys. 55, 437460.CrossRefGoogle Scholar
Cadot, O., Evrard, A. & Pastur, L. 2015 Imperfect supercritical bifurcation in a three-dimensional turbulent wake. Phys. Rev. E 91, 063005.Google Scholar
Castelain, T., Michard, M., Szmigiel, M., Chacaton, D. & Juvé, D. 2018 Identification of flow classes in the wake of a simplified truck model depending on the underbody velocity. J. Wind Engng Ind. Aerodyn. 175, 352363.CrossRefGoogle Scholar
Castro, I. P. & Bradshaw, P. 1976 The turbulence structure of a highly curved mixing layer. J. Fluid Mech. 73, 265304.CrossRefGoogle Scholar
Dalla Longa, L., Evstafyeva, O. & Morgans, A. S. 2019 Simulations of the bi-modal wake past three-dimensional blunt bluff bodies. J. Fluid Mech. 866, 791809.CrossRefGoogle Scholar
Evrard, A., Cadot, O., Herbert, V., Ricot, D., Vigneron, R. & Délery, J. 2016 Fluid force and symmetry breaking modes of a 3D bluff body with a base cavity. J. Fluids Struct. 61, 99114.CrossRefGoogle Scholar
Evstafyeva, O., Morgans, A. S. & Dalla Longa, L. 2017 Simulation and feedback control of the Ahmed body flow exhibiting symmetry breaking behaviour. J. Fluid Mech. 817, R2.CrossRefGoogle Scholar
Gentile, V., Van Oudheusden, B., Schrijer, F. & Scarano, F. 2017 The effect of angular misalignment on low-frequency axisymmetric wake instability. J. Fluid Mech. 813, R3.CrossRefGoogle Scholar
Gerrard, J. H. 1966 The mechanics of the formation region of vortices behind bluff bodies. J. Fluid Mech. 25, 401413.CrossRefGoogle Scholar
Grandemange, M., Gohlke, M. & Cadot, O. 2012 Reflectional symmetry breaking of the separated flow over three-dimensional bluff bodies. Phys. Rev. E 86, 035302(R).Google ScholarPubMed
Grandemange, M., Gohlke, M. & Cadot, O. 2013a Bi-stability in the wake past parallelepiped bodies with various aspect ratios and wall effects. Phys. Fluids 25 (9), 095103.CrossRefGoogle Scholar
Grandemange, M., Gohlke, M. & Cadot, O. 2013b Turbulent wake past a three-dimensional blunt body. Part 1. Global modes and bi-stability. J. Fluid Mech. 722, 5184.CrossRefGoogle Scholar
Grandemange, M., Gohlke, M. & Cadot, O. 2014a Statistical axisymmetry of the turbulent sphere wake. Exp. Fluids 55, 1838.CrossRefGoogle Scholar
Grandemange, M., Gohlke, M. & Cadot, O. 2014b Turbulent wake past a three-dimensional blunt body. Part 2. Experimental sensitivity analysis. J. Fluid Mech. 752, 439461.CrossRefGoogle Scholar
Grandemange, M., Mary, A., Gohlke, M. & Cadot, O. 2013c Effect on drag of the flow orientation at the base separation of a simplified blunt road vehicle. Exp. Fluids 54, 1529.CrossRefGoogle Scholar
Haffner, Y.2020 Study and manipulation of the three-dimensional turbulent wake of a blunt body. PhD thesis, Ecole Nationale Supérieure de Mécanique et d’Aérotechnique (ENSMA).Google Scholar
Ho, C. M. & Huerre, P. 1984 Perturbed free shear layers. Ann. Rev. Fluid. Mech. 16 (1), 365422.CrossRefGoogle Scholar
Khalighi, B., Zhang, S., Koromilas, C., Balkanyi, S. R., Bernal, L. P., Iaccarino, G. & Moin, P.2001 Experimental and computational study of unsteady wake flow behind a bluff body with a drag reduction device. SAE Paper 2001-01-1042.CrossRefGoogle Scholar
Li, R., Barros, D., Borée, J., Cadot, O., Noack, B. R. & Cordier, L. 2016 Feedback control of bimodal wake dynamics. Exp. Fluids 57 (10), 158.CrossRefGoogle Scholar
Li, R., Borée, J., Noack, B. R., Cordier, L. & Harambat, F. 2019 Drag reduction mechanisms of a car model at moderate yaw by bi-frequency forcing. Phys. Rev. Fluids 4 (3), 034604.CrossRefGoogle Scholar
Lorite-Díez, M., Jimenéz-González, J. I., Pastur, L., Martńez-Bazán, C. & Cadot, O. 2020 Experimental analysis of the effect of local base blowing on three-dimensional wake modes. J. Fluid Mech. 883, A53.CrossRefGoogle Scholar
Lucas, J.-M., Cadot, O., Herbert, V., Parpais, S. & Délery, J. 2017 A numerical investigation of the asymmetric wake mode of a squareback Ahmed body – effect of a base cavity. J. Fluid Mech. 831, 675697.CrossRefGoogle Scholar
Lumley, J. L. 1970 Stochastic Tools in Turbulence. Academic Press.Google Scholar
Mariotti, A., Buresti, G. & Salvetti, M. V. 2015 Connection between base drag, separating boundary layer characteristics and wake mean recirculation length of an axisymmetric blunt-based body. J. Fluids Struct. 55, 191203.CrossRefGoogle Scholar
Meliga, P., Chomaz, J.-M. & Sipp, D. 2009 Global mode interaction and pattern selection in the wake of a disk: a weakly non-linear expansion. J. Fluid Mech. 633, 159189.CrossRefGoogle Scholar
Morris, S. C. & Foss, J. F. 2003 Turbulent boundary layer to single-stream shear layer: the transition region. J. Fluid Mech. 494, 187221.CrossRefGoogle Scholar
Natarajan, R. & Acrivos, A. 1993 The instability of steady flows past spheres and disks. J. Fluid Mech. 254, 323344.CrossRefGoogle Scholar
Pavia, G., Passmore, M. A., Varney, M. & Hodgson, G. 2020 Salient three-dimensional features of the turbulent wake of a simplified square-back vehicle. J. Fluid Mech. 888, A33.CrossRefGoogle Scholar
Pier, B. 2008 Local and global instabilities in the wake of a sphere. J. Fluid Mech. 603, 3961.CrossRefGoogle Scholar
Pineau, P. & Bogey, C. 2019 Steepened Mach waves near supersonic jets: study of azimuthal structure and generation process using conditional averages. J. Fluid Mech. 880, 594619.CrossRefGoogle Scholar
Plumejeau, B., Delprat, S., Keirsbulck, L., Lippert, M. & Abassi, W. 2019 Ultra-local model-based control of the square-back Ahmed body wake. Phys. Fluids 31, 085103.CrossRefGoogle Scholar
Rigas, G., Oxlade, A. R., Morgans, A. S. & Morrison, J. F. 2014 Low-dimensional dynamics of a turbulent axisymmetric wake. J. Fluid Mech. 755, R5.CrossRefGoogle Scholar
Ruiz, T., Sicot, C., Brizzi, L. E., Laumonier, J., Borée, J. & Gervais, Y. 2009 Unsteady near wake of a flat disk normal to a wall. Exp. Fluids 47 (4–5).CrossRefGoogle Scholar
Schmidt, O. T. & Schmid, P. 2019 A conditional space–time POD formalism for intermittent and rare events: example of acoustic bursts in turbulent jets. J. Fluid Mech. 867, R2.CrossRefGoogle Scholar
Sevilla, A. & Martínez-Bazán, C. 2004 Vortex-shedding in high Reynolds number axisymmetric bluff-body wakes: local linear instability and global bleed control. Phys. Fluids 16, 34603469.CrossRefGoogle Scholar
Smits, A. J. & Lim, T. 2000 Flow visualization, Techniques and Examples. Imperial College Press.CrossRefGoogle Scholar
Spohn, A. & Gilliéron, P. 2002 Flow separations generated by a simplified geometry of an automotive vehicle. In IUTAM Symposium: Unsteady Separated Flows, Toulouse, France, 8–12 April 2002.Google Scholar
Szmigiel, M.2017 Effet du flux de soubassement sur la dynamique du sillage d’un corps non profilé à culot droit: Application du contrôle actif pour la réduction de traînée de véhicule industriel. PhD thesis, Ecole Centrale de Lyon.Google Scholar
Towne, A., Schmidt, O. T. & Colonius, T. 2018 Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821867.CrossRefGoogle Scholar
Volpe, R., Devinant, P. & Kourta, A. 2015 Experimental characterization of the unsteady natural wake of the full-scale square back Ahmed body: flow bi-stability and spectral analysis. Exp. Fluids 56 (5), 122.CrossRefGoogle Scholar
Zaman, K. B. M. & Hussain, A. K. M. F. 1981 Turbulence suppression in free shear flows by controlled excitation. J. Fluid Mech. 103, 133159.CrossRefGoogle Scholar
Zdravkovich, M. M. 1985 Forces on a circular cylinder near a plane wall. Appl. Ocean Res. 7, 197201.CrossRefGoogle Scholar

Haffner et al. supplementary movie 1

Coupled wake/base pressure dynamics of a natural wake reversal. Left : streamwise velocity field ux in the plane z/H = 0.67. The recirculation region is indicated inside the white contour ux = 0 and the red cross denotes the position of the center of wake momentum deficit. Right : evolution of the lateral position of the base CoP yb with time in convection time units. The red dot indicates the current timing.

Download Haffner et al. supplementary movie 1(Video)
Video 4.7 MB

Haffner et al. supplementary movie 2

Hydrogen bubble flow visualization of the Ahmed body wake at ReH = 9000 in the vertical plane of symmetry y/H = 0. The recirculating flow coming from the bottom shear-layer is triggering the top shear-layer near the base to form large-scale structures of characteristic time-scale StH = 1.

Download Haffner et al. supplementary movie 2(Video)
Video 22.4 MB