Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T16:52:27.144Z Has data issue: false hasContentIssue false

Measurements of the wave-number/phase velocity spectrum of wall pressure beneath a turbulent boundary layer

Published online by Cambridge University Press:  29 March 2006

J. A. B. Wills*
Affiliation:
Aerodynamics Division, National Physical Laboratory, Teddington

Abstract

Measurements are presented of the wave-number/frequency and wave-number/phase velocity spectrum of wall pressure for a two-dimensional turbulent boundary layer in zero pressure gradient, obtained from a Fourier transform of experimental filtered spatial correlations. This method allows the results to be corrected for acoustic disturbances in the wind tunnel, and for finite transducer size. An empirical form for the pressure field is proposed, based on the measurements, and is used to predict a frequency spectrum correction for transducer size which agrees well with measured values.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bradshaw, P. 1967 J. Fluid Mech. 30, 241.Google Scholar
Bradshaw, P. & Hellens, G. E. 1964 Aero. Res. Counc. R & M 3437.Google Scholar
Brel, P. V. & Rasmussen, G. 1959 Brel & Kjaer Technical Review, 21959, 1.Google Scholar
Bull, M. K. & Willis, J. L. 1961 University of Southampton A.A.S.U. Rep. 199.Google Scholar
Corcos, G. M. 1962 University of California. Inst. of Eng. Res. Rep. series 183, no. 2.Google Scholar
Corcos, G. M. 1963 J. Acoust. Soc. Am. 35, 192.Google Scholar
Favre, A., Gaviglio, J. J. & Dumas, R. 1957 J. Fluid Mech. 2, 313.Google Scholar
Favre, A., Gaviglio, J. & Fohr, J. P. 1964 Proc. XIth Int. Congr. Appl. Mech. 878.Google Scholar
Gilchrist, R. B. & Strawderman, W. A. 1965 J. Acoust. Soc. Am. 38, 298.Google Scholar
Harrison, M. 1958 David Taylor Model Basin Report 1260.Google Scholar
Johnson, R. F. 1962 Aero. Res. Counc. Current Paper 685.Google Scholar
Kovasznay, L. S. G. & Remenyik, C. J. 1962 Proc. 1962 heat transfer and Fluid Mech. Inst. 76.Google Scholar
Kraichnan, R. H. 1956 J. Acoust. Soc. Am. 28, 378.Google Scholar
Landahl, M. T. 1967 J. Fluid Mech. 29, 441.Google Scholar
Lilley, G. M. & Hodgson, T. H. 1960 AGARD Rep. 276.Google Scholar
Lin, C. C. 1952 Quart. Appl. Math. 10, 295.Google Scholar
Sharma, R. 1968 Ph.D. Thesis, Southampton.Google Scholar
Uberoi, M. S. & Kovasznay, L. S. G. 1953 Quart. Appl. Math 10, 375.Google Scholar
Willmarth, W. W. & Roos, F. W. 1965 J. Fluid Mech. 22, 81.Google Scholar
Willmarth, W. W. & Wooldridge, C. E. 1962 J. Fluid Mech. 14, 187.Google Scholar
Wills, J. A. B. 1964 J. Fluid Mech. 20, 417.Google Scholar
Wills, J. A. B. 1968a J. Sci. Instr. Series 2, 1, 447.Google Scholar
Wills, J. A. B. 1968b J. Acoust. Soc. Am. 43, 1049.Google Scholar