Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-08T04:29:03.577Z Has data issue: false hasContentIssue false

Margination of white blood cells: a computational approach by a hydrodynamic phase field model

Published online by Cambridge University Press:  03 February 2016

Wieland Marth
Affiliation:
Institute of Scientific Computing, TU Dresden, 01062 Dresden, Germany
Sebastian Aland
Affiliation:
Institute of Scientific Computing, TU Dresden, 01062 Dresden, Germany
Axel Voigt*
Affiliation:
Institute of Scientific Computing, TU Dresden, 01062 Dresden, Germany Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
*
Email address for correspondence: [email protected]

Abstract

We numerically investigate margination of white blood cells and demonstrate the dependency on a number of conditions including haematocrit, the deformability of the cells and the Reynolds number. The approach, which is based on a mesoscopic hydrodynamic Helfrich-type model, reproduces previous results, e.g. a decreasing tendency for margination with increasing deformability and a non-monotonic dependency on haematocrit. The consideration of inertia effects, which may be of relevance in various parts of the cardiovascular system, indicates a decreasing tendency for margination with increasing Reynolds number. The effect is discussed by analysing inertial and non-inertial lift forces for single cells under different flow conditions and large-scale two-dimensional simulations of interacting red blood cells and white blood cells in an idealized blood vessel.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbitt, K. B. & Nash, G. B. 2003 Rheological properties of the blood influencing selectin-mediated adhesion of flowing leukocytes. Am. J. Physiol. Heart Circ. Physiol. 285, H229H240.CrossRefGoogle ScholarPubMed
Aland, S., Egerer, S., Lowengrub, J. & Voigt, A. 2014 Diffuse interface models of locally inextensible vesicles in a viscous fluid. J. Comput. Phys. 277, 3247.CrossRefGoogle Scholar
Asmolov, E. S. 1999 The inertial lift on a spherical particle in plane Poiseuille flow at large Reynolds number. J. Fluid Mech. 381, 6387.CrossRefGoogle Scholar
Bark, D. L. & Ku, D. N. 2010 Wall shear over high degree stenoses pertinent to atherothrombosis. J. Biomech. 43, 29702977.CrossRefGoogle ScholarPubMed
Beaucourt, J., Rioual, F., Seon, T., Biben, T. & Misbah, C. 2004 Steady to unsteady dynamics of a vesicle in a flow. Phys. Rev. E 69, 011906.CrossRefGoogle ScholarPubMed
Biben, T., Kassner, Kl. & Misbah, C. 2005 Phase-field approach to three-dimensional vesicle dynamics. Phys. Rev. E 72, 041921.CrossRefGoogle ScholarPubMed
Biben, T. & Misbah, C. 2003 Tumbling of vesicles under shear flow within an advected-field approach. Phys. Rev. E 67, 031908.CrossRefGoogle ScholarPubMed
Bonito, A., Nochetto, R. H. & Pauletti, M. S. 2011 Dynamics of biomembranes: effect of the bulk fluid. Math. Model. Nat. Phenom. 6, 2543.CrossRefGoogle Scholar
Bretherton, F. P. 1962 The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech. 14, 284304.CrossRefGoogle Scholar
Campelo, F. & Hernández-Machado, A. 2007 Shape instabilities in vesicles: a phase-field model. Eur. Phys. J. Special Topics 143, 101108.CrossRefGoogle Scholar
Carlo, D. Di, Humphry, E. J., Stone, H. & Toner, M. 2009 Particle segregation and dynamics in confined flows. Phys. Rev. Lett. 102, 094503.CrossRefGoogle ScholarPubMed
Du, Q., Li, M. & Liu, C. 2007 Analysis of a phase field Navier–Stokes vesicle–fluid interaction model. J. Discrete Continuous Dyn. Syst. B 8, 539556.CrossRefGoogle Scholar
Du, Q., Liu, C., Ryham, R. & Wang, X. 2005 A phase field formulation of the Willmore problem. Nonlinearity 18, 12491267.CrossRefGoogle Scholar
Du, Q., Liu, C. & Wang, X. 2006 Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions. J. Comput. Phys. 212, 757777.CrossRefGoogle Scholar
Fedosov, D. A., Fornleitner, J. & Gompper, G. 2012 Margination of white blood cells in microcapillary flow. Phys. Rev. Lett. 108, 028104.CrossRefGoogle ScholarPubMed
Fedosov, D. A. & Gompper, G. 2014 White blood cell margination in microcirculation. Soft Matt. 10, 29612970.CrossRefGoogle ScholarPubMed
Fischer, T. M., Stöhr-Liesen, M. & Schmid-Schönbein, H. 1978 The red-cell as a fluid droplet: tank tread-like motion of the human erythocyte-membrane in shear flow. Science 202, 894896.CrossRefGoogle ScholarPubMed
Formaggiam, L., Quarteroni, A. & Veneziani, A. 2000 Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System. Springer.Google Scholar
Freund, J. B. 2007 Leukocyte margination in a model microvessel. Phys. Fluids 19 (2), 023301.CrossRefGoogle Scholar
Geislinger, T. M. & Franke, T. 2014 Hydrodynamic lift of vesicles and red blood cells in flow – from Fåhraeus & Lindqvist to microfluidic cell sorting. Adv. Colloid Interface Sci. 208, 161176.CrossRefGoogle ScholarPubMed
Ghigliotti, G., Biben, T. & Misbah, C. 2010 Rheology of a dilute two-dimensional suspension of vesicles. J. Fluid Mech. 653, 489518.CrossRefGoogle Scholar
Goldsmith, H. L. & Mason, S. G. 1961 Axial migration of particles in Poiseuille flow. Nature 190, 10951096.CrossRefGoogle Scholar
Gu, R., Wang, X. & Gunzburger, M. 2014 Simulating vesicle–substrate adhesion using two phase field functions. J. Comput. Phys. 275, 626641.CrossRefGoogle Scholar
Haußer, F., Li, S., Lowengrub, J., Marth, W., Rätz, A. & Voigt, A. 2013 Thermodynamically consistent models for two-component vesicles. Intl J. Biomath. Biostat. 2 (1), 1948.Google Scholar
Helfrich, W. 1973 Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. c 28, 693703.CrossRefGoogle ScholarPubMed
Ho, B. P. & Leal, L. G. 1974 Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech. 65, 365400.CrossRefGoogle Scholar
Jain, A. & Munn, L. L. 2009 Determinants of leukocyte margination in rectangular microchannels. PLoS ONE 4 (9), e7104.CrossRefGoogle ScholarPubMed
Kim, Y. & Lai, M.-C. 2010 Simulating the dynamics of inextensible vesicles by the penalty immersed boundary method. J. Comput. Phys. 229, 48404853.CrossRefGoogle Scholar
Kraus, M., Wintz, W., Seifert, U. & Lipowsky, R. 1996 Fluid vesicle in shear flow. Phys. Rev. Lett. 77, 36853688.CrossRefGoogle ScholarPubMed
Krüger, T., Kaoui, B. & Harting, J. 2014 Interplay of inertia and deformability on rheological properties of a suspension of capsules. J. Fluid Mech. 751, 725745.CrossRefGoogle Scholar
Ku, D. 1997 Blood flow in arteries. Annu. Rev. Fluid Mech. 29, 399434.CrossRefGoogle Scholar
Kumar, A. & Graham, M. D. 2012 Margination and segregation in confined flows of blood and other multicomponent suspensions. Soft Matt. 8, 1053610548.CrossRefGoogle Scholar
Laadhari, A., Saramito, P. & Misbah, C. 2012 Vesicle tumbling inhibited by inertia. Phys. Fluids 24, 031901.CrossRefGoogle Scholar
Ling, S., Marth, W., Praetorius, S. & Voigt, A.2015 An adaptive finite element multi-mesh approach for interacting deformable objects in flow. Comput. Meth. Appl. Math. doi:10.1515/cmam-2016-0003.CrossRefGoogle Scholar
Marth, W. & Voigt, A. 2014 Signaling networks and cell motility: a computational approach using a phase field description. J. Math. Biol. 69, 91112.CrossRefGoogle ScholarPubMed
Matas, J.-P., Morris, J. F. & Guazzelli, E. 2004 Inertial migration of rigid spherical particles in Poiseuille flow. J. Fluid Mech. 515, 171195.CrossRefGoogle Scholar
Meßlinger, S., Schmidt, B., Noguchi, H. & Gompper, G. 2009 Dynamical regimes and hydrodynamic lift of viscous vesicles under shear. Phys. Rev. E 80, 011901.CrossRefGoogle ScholarPubMed
N’Dri, N. A., Shyy, W. & Tran-Son-Tay, R. 2003 Computational modeling of cell adhesion and movement using a continuum-kinetics approach. Biophys. J. 85, 22732286.CrossRefGoogle ScholarPubMed
Pearson, M. J. & Lipowsky, H. H. 2000 Influence of erythrocyte aggregation on leukocyte margination in postcapillary venules of rat mesentery. Am. J. Physiol. Heart Circ. Physiol. 279, H1460H1471.CrossRefGoogle ScholarPubMed
Prothero, J. W. & Burton, A. C. 1962 The physica of blood flow in capillaires. Biophys. J. 2, 199212.CrossRefGoogle Scholar
Salac, D. & Miksis, M. J. 2011 A level set projection model of lipid vesicles in general flows. J. Comput. Phys. 230, 81928215.CrossRefGoogle Scholar
Salac, D. & Miksis, M. J. 2012 Reynolds number effects on lipid vesicles. J. Fluid Mech. 711, 122146.CrossRefGoogle Scholar
Schonberg, J. & Hinch, E. 1989 Inertial migration of a sphere in Poiseuille flow. J. Fluid Mech. 203, 517524.CrossRefGoogle Scholar
Segre, G. & Silberberg, A. 1961 Radial particle displacements in Poiseuille flows of suspensions. Nature 189, 209210.CrossRefGoogle Scholar
Sohn, J. S., Tseng, Y.-H., Li, S., Voigt, A. & Lowengrub, J. 2010 Dynamics of multicomponent vesicles in a viscous fluid. J. Comput. Phys. 229, 119144.CrossRefGoogle Scholar
Takeishi, N., Imai, Y., Nakaaki, K., Yamaguchi, T. & Ishikawa, T. 2014 Leukocyte margination at arteriole shear rate. Physiol. Rep. 2, e12037.CrossRefGoogle ScholarPubMed
Tanaka, H. & Araki, T. 2000 Simulation method of colloidal suspensions with hydrodynamic interactions: fluid particle dynamics. Phys. Rev. Lett. 85, 13381341.CrossRefGoogle ScholarPubMed
Veerapaneni, S. K., Gueyffier, D., Zorin, D. & Biros, G. 2009 A boundary integral method for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2D. J. Comput. Phys. 228, 23342353.CrossRefGoogle Scholar
Vennemann, P., Lindken, R. & Westerweel, J. 2007 In vivo whole-field blood velocity measurement techniques. Exp. Fluids 42, 495511.CrossRefGoogle Scholar
Vey, S. & Voigt, A. 2007 AMDiS: adaptive multidimensional simulations. Comput. Visual. Sci. 10, 5767.CrossRefGoogle Scholar
Witkowski, T., Ling, S., Praetorius, S. & Voigt, A. 2015 Software concepts and numerical algorithms for a scalable adaptive parallel finite element method. Adv. Comput. Math 41, 11451177.CrossRefGoogle Scholar
Zhang, J., Das, S. & Du, Q. 2009 A phase field model for vesicle–substrate adhesion. J. Comput. Phys. 228, 78377849.CrossRefGoogle Scholar
Zhao, H. & Shaqfeh, E. S. G. 2011 The dynamics of a vesicle in simple shear flow. J. Fluid Mech. 674, 578604.CrossRefGoogle Scholar

Marth Supplementary Material

The video file "movie1.avi" shows WBC margination in a vessel for $H_t=0.293$ considering a rigid WBC and adopting the simulation parameters Re$=5\cdot10^{-2}$, Be$_{RBC}=5.3$, In$=0.1$ and $Q=15$.

Download Marth Supplementary Material(Video)
Video 11.3 MB