Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T17:04:46.637Z Has data issue: false hasContentIssue false

Magnetohydrodynamic pipe flow. Part 1

Published online by Cambridge University Press:  28 March 2006

Richard R. Gold
Affiliation:
Laboratories Division, Aerospace Corporation, Los Angeles 45, California

Abstract

The solution is obtained to the problem of the steady one-dimensional flow of an incompressible, viscous, electrically conducting fluid through a circular pipe in the presence of an applied (transverse) uniform magnetic field. A no-slip condition on the velocity is assumed at the non-conducting wall. The solution is exact and thus valid for all values of the Hartmann number. Excellent agreement exists between the present theoretical results and the experimental values obtained by Hartmann & Lazarus (1937) in the low to medium Hartmann number range. The high Hartmann number case is treated by Shercliff (1962) in the following paper.

Type
Research Article
Copyright
© 1962 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chang, C. C. & Lundgren, T. S. 1961 Z. angew. Math. Phys. 12, 100.
Fabri, J. & Siestrunck, R. 1960 Bull. Assoc. Tech. Maritime Aeronautiqe, no. 60, 333.
Gold, R. R. 1961 Aerospace Corp. Rep. no. TDR-930(2119)TR-1.
Hartmann, J. 1937 Math.-fys. Medd. 15, 6.
Hartmann, J. & Lazarus, F. 1937 Math.-fys. Medd. 15,no.7.
Shercliff, J. A. 1953 Proc. Camb. Phil. Soc. 49, 136.
Shercliff, J. A. 1956 J. Fluid Mech. 1, 644.
Shercliff, J. A. 1962 J. Fluid Mech. 13, 513.
Tanazawa, I. 1960 Tenth meeting of Theor. and Appl. Mech., Japan, p. 13.
Uflyand, Y. S. 1960 Zh. Tekh. Fiz. 30, 1258. (Translation: 1961 Soviet Phys.-Tech.Phys. 5,1194).
Uhlenbusch, J. & Fischer, E. 1961 Z. Phys, 164, 190.