Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T17:09:09.683Z Has data issue: false hasContentIssue false

Magnetohydrodynamic Flow and Turbulence: a report on the Fifth Beer-Sheva Seminar

Published online by Cambridge University Press:  21 April 2006

H. Branover
Affiliation:
Center for MHD Studies, Ben-Gurion University, P.O. Box 653, Beer-Sheva, Israel
H. K. Moffatt
Affiliation:
Center for MHD Studies, Ben-Gurion University, P.O. Box 653, Beer-Sheva, Israel
M. Mond
Affiliation:
Center for MHD Studies, Ben-Gurion University, P.O. Box 653, Beer-Sheva, Israel
E. S. Pierson
Affiliation:
Center for MHD Studies, Ben-Gurion University, P.O. Box 653, Beer-Sheva, Israel
P. S. Sulem
Affiliation:
Center for MHD Studies, Ben-Gurion University, P.O. Box 653, Beer-Sheva, Israel
A. Yakhot
Affiliation:
Center for MHD Studies, Ben-Gurion University, P.O. Box 653, Beer-Sheva, Israel

Abstract

This paper is a summary of the Fifth Beer-Sheva Seminar on Magnetohydrodynamic (MHD) Flows and Turbulence, held in Jerusalem during 2–6 March 1987, with 99 participants from 12 countries. Reviews and research papers were presented on general problems of turbulence, MHD turbulence, fundamental MHD, two-phase flows with and without magnetic fields, and on different applications of liquid-metal MHD, especially in power generation nuclear fission and fusion, and in metallurgy.

Type
Research Article
Copyright
© 1988 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashpis, D. 1986 On the application of Fourier transforms to the linear stability analysis of boundary layers. PhD dissertation. Case Western University.
Batchelor, G. K. 1969 Phys. Fluids 12, 233.
Bardos, C., Sulem, C. & Sulem, P. L. 1986 Long time dynamies of a conducting fluid in the presence of a strong magnetic field. Trans. Am. Math. Sco. (submitted).Google Scholar
Berger, Marc A. Computational methods for two-phase flow in networks.
Berger, Mitchell A. Methods of topological description in magnetohydrodynamics.
Berry, G. F., Petrick, M. Pierson, E. S. & Sukoriansky, S. Application studies for the OMACON LMMHD concept.
Block, F. R. Investigation of pressure losses and apparent viscosity incurred by periodic electromagnetic forces.
Blumenau, L. & Spero, E. Liquid jet gas pump as mixer element with 2-phase LMMHD generator and compressor systems.
Brachet, M. E., Meiron, D. I., Orszag, S. A., Nickel, B. G., Morf, R. H. & Frisch, U. 1983 Small-scale structure of the Taylor—Green vortex. J. Fluid Mech. 130, 411452.Google Scholar
Brachet, M. E., Meneguzzi, M., Politano, H. & Sulem, P. L. Direct numerical simulation of two-dimensional turbulence.
Brachet, M. E., Meneguzzi, M. & Sulem, P. L. 1986 Phys. Rev. Lett. 57, 687.
Branover, H., El-Boher, A., Lesin, S. & Unger, Y. Two-phase flow phenomena in gravitational MHD power systems.
Branover, H. & Sukoriansky, S. Enhancement of turbulence in a magnetic field.
Branover, H., El-Boher, A., Lesin, S., Petrick, M. & Zilberman, I. Testing of OMACON type MHD power systems.
Branover, H., Greenspan, E., Hoffmann, N. & Sukoriansky, S. Test requirements to establish scaling laws for anisotropic turbulence in liquid metal flow in fusion reactor blankets conditions.
Caillault, B., Perrier, R. Aubert, J.-J. & Fautrelle, Y. High frequency induction furnace for oxide melting.
Cristea, E.-D., Lemnean, N. & Vartobomei, N. Numerical approach of turbulent flow for gas fired MHD combustor — 3D mathematical model.
Librescu, L. Unsteady pressure loads on 3D lifting surfaces oscillating in a supersonic electrically-conducting flow environment.
Lin, H. J. & Katz, J. Observations on the occurrence of cavitation in water jets.
Logan, P. Simultaneous measurements of temperature, density and mass flux in supersonic turbulence.
Manzini, F., de Haro, M. Lopez, Castrejon, A. & Ramos, E. Developing distance in MHD flow.
Marty, Ph. & Werkoff, F. Some of the aspects of a liquid metal induction generator.
Matthaeus, W. H., Goldstein, M. L. & Montgomery, D. 1983 Phys. Rev. Lett. 51, 16.
Meneguzzi, M., Pouquet, A. & Sulem, P. L. Influence of large scale magnetic fields and velocity — magnetic field correlation on decaying two-dimensional turbulence.
Meneguzzi, M. Direct numerical simulations of turbulence.
Messerle, H. K. Plasma driven MHD power plant.
Mestel, A. J. On MHD flows with closed streamlines.
Moffatt, H. K. Relaxation to magnetostatic equilibrium and implications for Euler flows and turbulence.
Moffatt, K. 1978 Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press.
Mond, M. Parametric instabilities in bubbly liquid metals.
Montgomery, D. MHD turbulent processes.
Moreau, R. J. On the hydrodynamics of aluminum reduction cells.
Moros, A. Hunt, J. C. R. & Lillicrap, D. C. Modelling recirculating flows in Channekl induction furnaces.
Naot, D. & Peled, A. Magneto-hydrodynamic redistribution of three dimensional turbulence.
Nathenson, R. D., Alexion, C. C., Slepian, R. M., Groupe, M. & Gray, O. E., A new approach to pumping sodium in liquid metal reactors.
Duc, J. M. Nguyen, Caperan, Ph. & Sommeria, J. Experimental and numerical models of 2-D flows.
Oshima, S. & Yamane, R. Non-linear waves of liquid metals under a transverse magnetic field.
Pade, O., Meinhardt, Y. & Wolfshtein, M. Secondary flows in magnetically driven rotational flow.
Pavlik, D. The feasibility of using homopolar motors coupled to synchronous generators to convert the low voltage d.c. from an LMMHD device to a.c. power.
Perakis, K. K. & Papailious, D. D. The turbulent vortex ring and the entrainment mechanism.
Petrick, M., Berry, G. & Pierson, E. S. The Hybrid OMACON — an optimized LMMHD system configuration.
Petrick, M., Berry, G. & Pierson, E. S. 1985 Performance of OMACON LMMHD conversion systems in selected system applications: final summary report. Rep. SCUSA/12–85, Solmecs Corporation (USA).
Politano, H. Competition between one and two roll solutions in porous convection.
Pouquet, A., Meneguzzi, M. & Frisch, U. 1986 Phys. Rev. A33, 4266.
Reshotko, E. Stability and transition of boundary layers.
Saffman, P. G. 1971 Stud. Appl. Maths 50, 377.
She, Z. S. & Frisch, U. Transition to turbulence in two dimensional Kolmogorov flow.
Shivashinsky, G. 1985 Physica 17D, 243.
Slepian, R. M. & Walk, S. R. MFD applications of electromagnetic field solutions in multilayered geometries.
Sulem, C. Sulem, P. L. & Bardos, C. Laminarization by strong magnetic field.
Talmage, G. & Walker, J. Three-dimensional laminar MHD flow in ducts with thin metal walls and strong magnetic fields.
Dahlburg, J. P., Montgomery, D., Goolen, G. D. & Turner, L. 1987 Turbulent relaxation of a confined magnetofluid to a force-free state. J. Plasma Phys. 37, 299.Google Scholar
Dahlburg, J. P., Montgomery, D., Goolen, G. D. & Turner, L. 1986 Turbulent relaxation to a force-free field-reversed state. Phys. Rev. Lett. 57, 428431.Google Scholar
Dang, K. & Loisel, P. Direct simulation of viscous compressible transitional flows.
Davidson, P. A. Primary and secondary flows in rotary magnetic stirring of molten steel.
Dobrowolny, M., Mangeney, A. & Veltri, P. L. 1980 Phys. Rev. Lett. 45, 1441.
Etay, J. & Garnier, M. Horizontal mouldless electromagnetic continuous casting: a normal model mode stability analysis.
Farge, M. Effects of inertia-gravity waves and rotation on two-dimensional turbulence.
Farge, M. & Sadourny, R. 1986 C.R. Acad. Sci. Paris 303, II. 81.
Fauve, S. Competing instabilities and transition to turbulence in Rayleigh—Bénard convection.
Fauve, S., Laroche, C. & Perrin, B. 1985 Phys. Rev. Lett. 55, 208.
Frisch, U., She, Z. S. & Sulem, P. L. 1987 Large scale flow driven by the anisotropic kinetic alpha effect. Physica D (submitted).Google Scholar
Gagnoud, A., Etay, J. & Garnier, M. Free surface determination in levitation melting process.
Garnier, M. MHD & metallurgy: a source of innovative technologies.
Gilbert, A. D. & Frisch, U. Dynamos without helicity.
Gilbert, A. D., Frisch, U. & Pouquet, A. 1987 Helicity is unnecessary for dynamo action but it helps. Nature (submitted).Google Scholar
Gilbert, A. D. & Pouquet, A. Large scale instabilities in nonlinear MHD flows.
Gliere, A., Fautrelle, Y. & Masse, Ph. A numerical coupled model for electromagnetic stirring in continuous casting of steel.
Grappin, R., Pouquet, A. & Leorat, J. 1983 Astron. Astrophys. 126, 51.
Greenspan, E., Barak, A., Blumenau, L., Branover, H., El-Boher, A., Spero, E. & Sukoriansky, S. Liquid metal MHD conversion of nuclear energy to electricity — possibilities and implications.
Hameiri, E. & Bhattacharjee, A. Turbulent relaxation in MHD plasmas.
Hunt, J. C. R., Davidson, P. A. & Moros, T. Turbulent recirculating flow in liquid metal MHD.
Hussain, A. K. M. F. Coherent structures: their measurements and applications.
Irmay, S. A pseudoturbulent solution of the Navier—Stokes equations.
Johnston, J. A. & Cowley, M. D. Thermoelectric MHD created by an ‘odd’ temperature distribution in a rectangular geometry.
Kalman, H. & Letan, R. Condensation of a bubble in an immiscible liquid: characteristics of the thermal resistance.
Kapron, H. Influence of pulsation of plasma thermodynamic parameters on electric parameters of MHD generator.
Kerr, R. M. 1985 J. Fluid Mech. 153, 31.
Klebanoff, P. S. On the interaction of a three-dimensional roughness element with a laminar boundary layer.
Kraichnan, R. H. Analytical turbulence theory: progress and outlook.
Kraichnan, R. H. 1965 Phys. Fluids 8, 1385.
Kraichnan, R. H. 1967 Phys. Fluids 10, 2427.
Kraichnan, R. H. 1985 In Theoretical Approaches to Turbulence (ed. D. L. Dwoyer, M. Y. Hussaini & R. G. Voight), pp. 91135. Springer.
Laborde, R. & Alemany, A. On some particular aspects of liquid/gas separation in a LMMHD converter.
Lahjomri, J., Caperan, Ph. & Alemany, A. Local measurements of magnetic and velocity perturbation fields in the up and downstream wakes of a cylinder.
Laredo, D., Levy, Y. & Timnat, Y. M. Two phase flow diagnostics in reactive systems.
Taylor, J. B. 1986 Relaxation and magnetic reconnection in plasmas. Rev. Mod. Phys. 58, 741763.Google Scholar
Thual, O. & Bellevaux, C. Numerical simulations of Ginzburg—Landau equation and associated phase dynamics: first bifurcations.
Ullman, A. & Letan, R. Effect of noncondensibles on condensation of bubbles.
Vives, C. & Perry, C. Solidification of a pure metal in the presence of rotating flows.
Weil, D. Topological helicity in MHD turbulence.
Weiss, J. 1981 The dynamics of the enstrophy transfer in two-dimensional hydrodynamics. La Jolla Inst., La Jolla, California, LJI-TN-81-121.
v. Weissenfluh, T. & Sigg, B. Experience with permanent-magnet probes for the measurement of local velocities in liquid metals.
Werkoff, F. & Garnier, J. Observation of magnetic fields generation and distortion in the Phenix LMFBR.
Winant, C. D. & Browand, F. K. 1974 Vortex pairing: the mechanism of turbulent mixing layer growth at moderate Reynolds number. J. Fluid Mech. 63, 237.Google Scholar
Weisbrot, I. 1985 On the highly excited turbulent mixing layer. M.Sc. thesis, Tel-Aviv University.
Wygnanski, I. On the amalgamation of vortices in a turbulent mixing layer.
Yakhot, A., Yakhot, V. & Orszag, S. A. Large-eddy simulation of a turbulent channel flow.
Yakhot, V. & Orszag, S. A. 1986 Renormalization group analysis of turbulence. I. Basic theory. J. Sci. Comp. 1, 351.Google Scholar
Zubatov, K. G. Wave energy exchanger in open cycle MHD electrical power generation.