Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T01:41:09.378Z Has data issue: false hasContentIssue false

Magnetic field driven micro-convection in the Hele-Shaw cell: the Brinkman model and its comparison with experiment

Published online by Cambridge University Press:  04 June 2015

G. Kitenbergs
Affiliation:
MMML Lab, Faculty of Physics and Mathematics, University of Latvia, Riga, LV-1002, Latvia Sorbonne Universités, UPMC Univ. Paris 06, UMR 8234, PHENIX, Paris, F-75005, France CNRS, UMR 8234, PHENIX, Paris, F-75005, France
A. Tatulcenkovs
Affiliation:
Department of Theoretical Physics, University of Latvia, Riga, LV-1002, Latvia
K. Ērglis
Affiliation:
MMML Lab, Faculty of Physics and Mathematics, University of Latvia, Riga, LV-1002, Latvia
O. Petrichenko
Affiliation:
MMML Lab, Faculty of Physics and Mathematics, University of Latvia, Riga, LV-1002, Latvia
R. Perzynski
Affiliation:
Sorbonne Universités, UPMC Univ. Paris 06, UMR 8234, PHENIX, Paris, F-75005, France CNRS, UMR 8234, PHENIX, Paris, F-75005, France
A. Cēbers*
Affiliation:
Department of Theoretical Physics, University of Latvia, Riga, LV-1002, Latvia
*
Email address for correspondence: [email protected]

Abstract

The micro-convection caused by the ponderomotive forces of the self-magnetic field in a magnetic fluid is studied here both numerically and experimentally. The theoretical approach based on the general Brinkman model substantially improves the description with respect to the previously proposed Darcy model. The predictions of both models are here compared to finely controlled experiments. The Brinkman model, in contrast to the Darcy model, allows us to describe the formation of mushrooms on the plumes of the micro-convective flow and the width of the fingers. In the Brinkman approach, excellent quantitative agreement is also obtained for the finger velocity dynamics and the velocity maximal values as a function of the magnetic Rayleigh number. The diffusion coefficient of particles of the water-based magnetic colloid determined by the threshold field strength value of the micro-convection is significantly larger than the diffusion coefficient of individual particles. This result is confirmed by independent measurements of the diffusion coefficient at the smearing of the diffusion front.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bischofberger, I., Ramachandran, R. & Nagel, S. R. 2014 Fingering versus stability in the limit of zero interfacial tension. Nat. Commun. 5, 5265.CrossRefGoogle ScholarPubMed
Cebers, A. 1981 Dynamics of magnetostatic instabilities. Magnetohydrodynamics 17, 113121.Google Scholar
Cebers, A. 1997 Stability of diffusion fronts of magnetic particles in porous media under the action of external magnetic field. Magnetohydrodynamics 33, 4855.Google Scholar
Cebers, A. & Maiorov, M. M. 1980 Magnetostatic instabilities in plane layers of magnetizable liquids. Magnetohydrodynamics 16 (1), 2127.Google Scholar
Chen, C.-Y. 2003 Numerical simulations of fingering instabilities in miscible magnetic fluids in a Hele-Shaw cell and the effects of Korteweg stresses. Phys. Fluids 15 (4), 10861089.CrossRefGoogle Scholar
Chen, C.-Y., Tsai, W. K & Miranda, J. A. 2008 Hybrid ferrohydrodynamic instability: coexisting peak and labyrinthine patterns. Phys. Rev. E 77, 056306.CrossRefGoogle ScholarPubMed
Chen, C.-Y. & Wen, C.-Y. 2002 Numerical simulations of miscible magnetic flows in a Hele-Shaw cell: radial flows. J. Magn. Magn. Mater. 252, 296298.CrossRefGoogle Scholar
Derec, C., Boltenhagen, P., Neveu, S. & Bacri, J.-C. 2008 Magnetic instability between miscible fluids in a Hele-Shaw cell. Magnetohydrodynamics 44 (2), 135142.CrossRefGoogle Scholar
Erglis, K., Tatulcenkov, A., Kitenbergs, G., Petrichenko, O., Ergin, F. G., Watz, B. B. & Cebers, A. 2013 Magnetic field driven micro-convection in the Hele-Shaw cell. J. Fluid Mech. 714, 612633.CrossRefGoogle Scholar
Flament, C., Bacri, J.-C., Cebers, A., Elias, F. & Perzynski, R. 1996 Parallel stripes of ferrofluid as a macroscopic bidimensional smectic. Europhys. Lett. 34 (3), 225230.CrossRefGoogle Scholar
Goyal, N. & Meiburg, E. 2006 Miscible displacements in Hele-Shaw cells: two-dimensional base states and their linear stability. J. Fluid Mech. 558, 329355.CrossRefGoogle Scholar
Igonin, M.2004 Hydrodynamic instabilities of miscible and immiscible magnetic fluids in a Hele-Shaw cell. PhD dissertation, Université Paris 7 – Denis Diderot.Google Scholar
Igonin, M. & Cebers, A. 2003 Labyrinthine instability of miscible magnetic fluids. Phys. Fluids 15, 17341744.CrossRefGoogle Scholar
Jackson, D. P., Goldstein, R. E. & Cebers, A. O. 1994 Hydrodynamics of fingering instabilities in dipolar fluids. Phys. Rev. E 50, 298307.CrossRefGoogle ScholarPubMed
Kitenbergs, G., Erglis, K., Perzynski, R. & Cebers, A. 2015 Magnetic particle mixing with magnetic micro-convection for microfluidics. J. Magn. Magn. Mater. 380, 227230.CrossRefGoogle Scholar
Maiorov, M. M. & Cebers, A. 1983 Magnetic microconvection on the diffusion front of ferroparticles. Magnetohydrodynamics 19 (4), 376380.Google Scholar
Massart, R. 1981 Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE 17, 12471248.Google Scholar
Mezulis, A. & Blums, E. 2005 Experimental investigations of the microconvective instability in optically induced gratings. Magnetohydrodynamics 41 (4), 341348.Google Scholar
Samarskij, A. A. & Gulin, A. V. 1989 Numerical Methods. Nauka.Google Scholar
Seul, M. & Wolfe, R. 1992 Evolution of disorder in magnetic stripe domains. Part I. Transverse instabilities and disclination unbinding in lamellar patterns. Phys. Rev. A 46, 75197533.CrossRefGoogle Scholar
Tan, C. T. & Homsy, G. M. 1988 Simulation of nonlinear viscous fingering in miscible displacement. Phys. Fluids 31, 13301338.CrossRefGoogle Scholar
Truzzolillo, D., Mora, S., Dupas, C. & Cipelletti, L. 2014 Off-equilibrium surface tension in colloidal suspensions. Phys. Rev. Lett. 112, 128303.CrossRefGoogle ScholarPubMed
Wen, C.-Y., Chen, C.-Y. & Kuan, D. C. 2007 Experimental studies of labyrinthine instabilities of miscible ferrofluids in a Hele-Shaw cell. Phys. Fluids 19, 084101.CrossRefGoogle Scholar
Zablotsky, D.2012 Microconvective effects in non-isothermal and inhomogeneous dispersions of magnetic nanoparticles. PhD dissertation, University of Latvia.Google Scholar
Zimmerman, W. B. & Homsy, G. M. 1992 Viscous fingering in miscible displacements: unification of effects of viscosity contrast, anisotropic dispersion, and velocity dependence of dispersion on nonlinear finger propagation. Phys. Fluids 4 (11), 23482359.CrossRefGoogle Scholar
Supplementary material: PDF

Kitenbergs et al. supplementary material

Supplementary figures

Download Kitenbergs et al. supplementary material(PDF)
PDF 566.4 KB

Kitenbergs et al. supplementary movie

Numerical simulation result of the Brinkman model

Download Kitenbergs et al. supplementary movie(Video)
Video 36.8 KB

Kitenbergs et al. supplementary movie

Numerical simulation result of the Darcy model

Download Kitenbergs et al. supplementary movie(Video)
Video 70 KB

Kitenbergs et al. supplementary movie

Experimental observation

Download Kitenbergs et al. supplementary movie(Video)
Video 85.3 KB