Hostname: page-component-f554764f5-nwwvg Total loading time: 0 Render date: 2025-04-10T06:09:13.509Z Has data issue: false hasContentIssue false

Machine-learning-based pressure reconstruction with moving boundaries

Published online by Cambridge University Press:  02 April 2025

Hongping Wang
Affiliation:
State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, PR China
Fan Wu
Affiliation:
State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, PR China
Yi Liu
Affiliation:
State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, PR China
Xinyi He
Affiliation:
State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, PR China
Shuyi Feng
Affiliation:
Department of Structural Heart Disease, National Center for Cardiovascular Disease, PR China Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
Shizhao Wang*
Affiliation:
State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, PR China
*
Corresponding author: Shizhao Wang, [email protected]

Abstract

The greatest challenge in pressure reconstruction from the measured velocity fields is that the error of material acceleration is significantly contaminated due to error propagation. Particularly for flows with moving boundaries, accurate boundary velocities are difficult to obtain due to error propagation, and a complex boundary processing technique is needed to treat the moving boundaries. The present work proposes a machine-learning-based method to determine the pressure for incompressible flows with moving boundaries. The proposed network consists of two neural networks: one network, named the boundary network, is used to track the Lagrangian boundary points; the other physics-informed neural network, named the flow network, is adopted to approximate the flow fields. These two networks are coupled by imposing boundary conditions. We further propose a new dynamic weight strategy for the loss terms to guarantee convergence and stability. The performance of the proposed method is validated by two examples: the flow over an oscillating cylinder and the flow around a swimming fish. The proposed method can accurately determine the pressure fields and boundary motion from synthetic particle image velocimetry (PIV) flow fields. Moreover, this method can also predict the boundary and pressure at a given instant without supervised data. Finally, this method was applied to reconstruct the pressure from the two-dimensional and three-dimensional PIV velocities of the left ventricle. All of the results indicate that the proposed method can accurately reconstruct the pressure fields for flows with moving boundaries and is a novel method for surface pressure estimation.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abe, S., Okamoto, K. & Madarame, H. 2004 The development of PIV-PSP hybrid system using pressure sensitive particles. Meas. Sci. Technol. 15 (6), 11531157.Google Scholar
Adrian, R.J. 2005 Twenty years of particle image velocimetry. Exp. Fluids 39 (2), 159169.Google Scholar
Arzani, A., Wang, J.X. & D’Souza, R.M. 2021 Uncovering near-wall blood flow from sparse data with physics-informed neural networks. Phys. Fluids 33 (7), 071905.CrossRefGoogle Scholar
Berkooz, G., Holmes, P. & Lumley, J.L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25 (1), 539575.Google Scholar
Bermejo, J., Martínez-Legazpi, P. & del Álamo, J.C. 2015 The clinical assessment of intraventricular flows. Annu. Rev. Fluid Mech. 47 (1), 315342.Google Scholar
Brindise, M.C., Busse, M.M. & Vlachos, P.P. 2018 Density- and viscosity-matched Newtonian and non-Newtonian blood-analog solutions with PDMS refractive index. Exp. Fluids 59 (11), 173.Google ScholarPubMed
Brunton, S.L., Noack, B.R. & Koumoutsakos, P. 2020 Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 52 (1), 477508.Google Scholar
Brunton, S.L., Proctor, J.L. & Kutz, J.N. 2016 Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 113 (15), 39323937.CrossRefGoogle ScholarPubMed
Cai, S.Z., Mao, Z.P., Wang, Z.C., Yin, M.L. & Karniadakis, G.E. 2021 a Physics-informed neural networks (PINNs) for fluid mechanics: a review. Acta Mechanica Sin. 37 (12), 17271738.CrossRefGoogle Scholar
Cai, S.Z., Wang, Z.C., Fuest, F., Jeon, Y.J., Gray, C. & Karniadakis, G.E. 2021 b Flow over an espresso cup: inferring 3-D velocity and pressure fields from tomographic background oriented Schlieren via physics-informed neural networks. J. Fluid Mech. 915, A102.Google Scholar
Cai, S.Z., Zhou, S.C., Xu, C. & Gao, Q. 2019 Dense motion estimation of particle images via a convolutional neural network. Exp. Fluids 60 (4), 73.Google Scholar
Cai, Z.M., Liu, Y., Chen, T. & Liu, T.S. 2020 Variational method for determining pressure from velocity in two dimensions. Exp. Fluids 61 (5), 118.Google Scholar
Calicchia, M.A., Mittal, R., Seo, J.H. & Ni, R. 2023 Reconstructing the pressure field around swimming fish using a physics-informed neural network. J. Expl Biol. 226 (8), jeb244983.Google ScholarPubMed
Callaham, J.L., Loiseau, J.C. & Brunton, S.L. 2023 Multiscale model reduction for incompressible flows. J. Fluid Mech. 973, A3.CrossRefGoogle Scholar
Chen, H. & Dasi, L.P. 2023 An in-vitro study of the flow past a transcatheter aortic valve using time-resolved 3D particle tracking. Ann. Biomed. Engng 51 (7), 14491460.Google Scholar
Churchill, V., Manns, S., Chen, Z. & Xiu, D.B. 2023 Robust modeling of unknown dynamical systems via ensemble averaged learning. J. Comput. Phys. 474, 111842.CrossRefGoogle Scholar
Dabiri, J.O., Bose, S., Gemmell, B.J., Colin, S.P. & Costello, J.H. 2014 An algorithm to estimate unsteady and quasi-steady pressure fields from velocity field measurements. J. Expl Biol. 217 (3), 331336.Google ScholarPubMed
Duraisamy, K., Iaccarino, G. & Xiao, H. 2019 Turbulence modeling in the age of data. Annu. Rev. Fluid Mech. 51 (1), 357377.Google Scholar
Eldan, R. & Shamir, O. 2016 The power of depth for feedforward neural networks. In 29th Annual Conference on Learning Theory (ed. V. Feldman, A. Rakhlin & O. Shamir), Proceedings of Machine Learning Research, Columbia University, New York, New York, USA, 23–26 Jun, vol. 49, pp. 907940. PMLR.Google Scholar
Elsinga, G.E., Scarano, F., Wieneke, B. & van Oudheusden, B.W. 2006 Tomographic particle image velocimetry. Exp. Fluids 41 (6), 933947.CrossRefGoogle Scholar
Fan, D., Xu, Y., Wang, H.P. & Wang, J.J. 2023 Comparative assessment for pressure field reconstruction based on physics-informed neural network. Phys. Fluids 35 (7), 077116.CrossRefGoogle Scholar
Ferrari, S. & Rossi, L. 2008 Particle tracking velocimetry and accelerometry (PTVA) measurements applied to quasi-two-dimensional multi-scale flows. Exp. Fluids 44 (6), 873886.CrossRefGoogle Scholar
Fukami, K., Fukagata, K. & Taira, K. 2019 Super-resolution reconstruction of turbulent flows with machine learning. J. Fluid Mech. 870, 106120.Google Scholar
Fukami, K., Fukagata, K. & Taira, K. 2021 Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows. J. Fluid Mech. 909, A9.CrossRefGoogle Scholar
Fukami, K. & Taira, K. 2023 Grasping extreme aerodynamics on a low-dimensional manifold. Nat. Commun. 14 (1), 6480.CrossRefGoogle ScholarPubMed
Gao, Q., Pan, S.W., Wang, H.P., Wei, R.J. & Wang, J.J. 2021 Particle reconstruction of volumetric particle image velocimetry with the strategy of machine learning. Adv. Aerodyn. 3 (1), 28.CrossRefGoogle Scholar
Gao, Q., Wang, H.P. & Shen, G.X. 2013 Review on development of volumetric particle image velocimetry. Chinese Sci. Bull. 58 (36), 45414556.CrossRefGoogle Scholar
Gao, Q., Wang, H.P. & Wang, J.J. 2012 A single camera volumetric particle image velocimetry and its application. Sci. Chin. Technol. Sci. 55 (9), 25012510.CrossRefGoogle Scholar
van Gent, P.L., et al. 2017 Comparative assessment of pressure field reconstructions from particle image velocimetry measurements and Lagrangian particle tracking. Exp. Fluids 58 (4), 33.Google Scholar
Gooden, S.C.M., Hatoum, H., Zhang, W., Boudoulas, K.D. & Dasi, L.P. 2022 Multiple MitraClips: the balancing act between pressure gradient and regurgitation. J. Thorac. Cardiovasc. Surg. 163 (4), 13191327.e1.Google ScholarPubMed
Jagtap, A.D., Kawaguchi, K. & Karniadakis, G.E. 2020 Adaptive activation functions accelerate convergence in deep and physics-informed neural networks. J. Comput. Phys. 404, 109136.CrossRefGoogle Scholar
Jiang, X.Y., Kerswell, R.R., Lefauve, A., Linden, P.F. & Zhu, L. 2024 New insights into experimental stratified flows obtained through physics-informed neural networks. J. Fluid Mech. 981, R1.CrossRefGoogle Scholar
Jin, X.W., Cai, S.Z., Li, H. & Karniadakis, G.E. 2021 NSFnets (Navier–Stokes flow nets): physics-informed neural networks for the incompressible Navier–Stokes equations. J. Comput. Phys. 426, 109951.CrossRefGoogle Scholar
Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S.F. & Yang, L. 2021 Physics-informed machine learning. Nat. Rev. Phys. 3 (6), 422440.CrossRefGoogle Scholar
de Kat, R. & van Oudheusden, B.W. 2012 Instantaneous planar pressure determination from PIV in turbulent flow. Exp. Fluids 52 (5), 10891106.Google Scholar
Kat, R.D. & Ganapathisubramani, B. 2012 Pressure from particle image velocimetry for convective flows: a Taylor’s hypothesis approach. Meas. Sci. Technol. 24 (2), 024002.Google Scholar
Keane, R.D. & Adrian, R.J. 1992 Theory of cross-correlation analysis of PIV images. Appl. Sci. Res. 49 (3), 191215.Google Scholar
Kim, H., Kim, J., Won, S. & Lee, C. 2021 Unsupervised deep learning for super-resolution reconstruction of turbulence. J. Fluid Mech. 910, A29.CrossRefGoogle Scholar
Lapinskas, T., Pedrizzetti, G., Stoiber, L., Düngen, H.D., Edelmann, F., Pieske, B. & Kelle, S. 2019 The intraventricular hemodynamic forces estimated using routine cmr cine images: a new marker of the failing heart. Cardiovasc. Imaging 12 (2), 377379.Google ScholarPubMed
Liao, Z.M., Zhao, Z.Y., Chen, L.B., Wan, Z.H., Liu, N.S. & Lu, X.Y. 2023 Reduced-order variational mode decomposition to reveal transient and non-stationary dynamics in fluid flows. J. Fluid Mech. 966, A7.CrossRefGoogle Scholar
Ling, J., Kurzawski, A. & Templeton, J. 2016 Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J. Fluid Mech. 807, 155166.CrossRefGoogle Scholar
Linot, A.J. & Graham, M.D. 2020 Deep learning to discover and predict dynamics on an inertial manifold. Phys. Rev. E 101 (6), 062209.CrossRefGoogle Scholar
Liu, X.F. & Katz, J. 2006 Instantaneous pressure and material acceleration measurements using a four-exposure PIV system. Exp. Fluids 41 (2), 227240.Google Scholar
Liu, Y., Meng, X.H. & Karniadakis, G.E. 2021 B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data. J. Comput. Phys. 425, 109913.Google Scholar
Liu, Y., Wang, G. & Ye, Z.Y. 2018 Dynamic mode extrapolation to improve the efficiency of dual time stepping method. J. Comput. Phys. 352, 190212.CrossRefGoogle Scholar
Liu, Y., Wang, H.P., Wang, S.Z. & He, G.W. 2023 A cache-efficient reordering method for unstructured meshes with applications to wall-resolved large-eddy simulations. J. Comput. Phys. 480, 112009.Google Scholar
Lorenzoni, V., Tuinstra, M. & Scarano, F. 2012 On the use of time-resolved particle image velocimetry for the investigation of rod-airfoil aeroacoustics. J. Sound Vib. 331 (23), 50125027.CrossRefGoogle Scholar
Lui, H.F.S. & Wolf, W.R. 2019 Construction of reduced-order models for fluid flows using deep feedforward neural networks. J. Fluid Mech. 872, 963994.CrossRefGoogle Scholar
Maulik, R., Fukami, K., Ramachandra, N., Fukagata, K. & Taira, K. 2020 Probabilistic neural networks for fluid flow surrogate modeling and data recovery. Phys. Rev. Fluids 5 (10), 104401.CrossRefGoogle Scholar
Mele, D., Smarrazzo, V., Pedrizzetti, G., Capasso, F., Pepe, M., Severino, S., Luisi, G.A., Maglione, M. & Ferrari, R. 2019 Intracardiac flow analysis: techniques and potential clinical applications. J. Am. Soc. Echocardiog. 32 (3), 319332.Google ScholarPubMed
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R. & Ng, R. 2020 NeRF: representing scenes as neural radiance fields for view synthesis. In Computer Vision – ECCV. 2020, (ed. Vedaldi, A., Bischof, H., Brox, T. & Frahm, J.-M. ), pp. 405421. Springer International Publishing.CrossRefGoogle Scholar
Murata, T., Fukami, K. & Fukagata, K. 2020 Nonlinear mode decomposition with convolutional neural networks for fluid dynamics. J. Fluid Mech. 882, 15.CrossRefGoogle Scholar
van Oudheusden, B.W. 2013 PIV-based pressure measurement. Meas. Sci. Technol. 24 (3), 032001.Google Scholar
Pedrizzetti, G. 2019 On the computation of hemodynamic forces in the heart chambers. J. Biomech. 95, 109323.CrossRefGoogle ScholarPubMed
Pedrizzetti, G. & Domenichini, F. 2015 Left ventricular fluid mechanics: the long way from theoretical models to clinical applications. Ann. Biomed. Engng 43 (1), 2640.Google Scholar
Pedrizzetti, G., La Canna, G., Alfieri, O. & Tonti, G. 2014 The vortex—an early predictor of cardiovascular outcome? Nat. Rev. Cardiol. 11 (9), 545553.Google ScholarPubMed
Pedrizzetti, G. & Perktold, K. 2003 Cardiovascular Fluid Mechanics. Springer.CrossRefGoogle Scholar
Pirnia, A., McClure, J., Peterson, S.D., Helenbrook, B.T. & Erath, B.D. 2020 Estimating pressure fields from planar velocity data around immersed bodies; a finite element approach. Exp. Fluids 61 (2), 55.Google Scholar
Rabault, J., Kuchta, M., Jensen, A., Reglade, U. & Cerardi, N. 2019 Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control. J. Fluid Mech. 865, 281302.CrossRefGoogle Scholar
Raffel, M., Willert, C.E., Scarano, F., Kähler, C.J., Wereley, S.T. & Kompenhans, J. 2018 Particle Image Velocimetry: A Practical Guide. Springer.Google Scholar
Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M., Hamprecht, F., Bengio, Y. & Courville, A. 2019 On the spectral bias of neural networks, Proceedings of the 36th International Conference on Machine Learning, (ed. Chaudhuri, K. & Salakhutdinov, R.), vol. 97, pp. 53015310. PMLR.Google Scholar
Raissi, M., Perdikaris, P. & Karniadakis, G.E. 2019 a Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686707.Google Scholar
Raissi, M., Wang, Z.C., Karniadakis, G.E. & Triantafyllou, M.S. 2019 b Deep learning of vortex-induced vibrations. J. Fluid Mech. 861, 119137.CrossRefGoogle Scholar
Raissi, M., Yazdani, A. & Karniadakis, G.E. 2020 Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science 367 (6481), 10261030.CrossRefGoogle ScholarPubMed
Saaid, H., et al. 2019 Tomographic PIV in a model of the left ventricle: 3D flow past biological and mechanical heart valves. J. Biomech. 90, 4049.Google Scholar
Scarano, F. 2002 Iterative image deformation methods in PIV. Meas. Sci. Technol. 13 (1), R1R19.CrossRefGoogle Scholar
Scarano, F. 2013 Tomographic PIV: principles and practice. Meas. Sci. Technol. 24 (1), 012001.CrossRefGoogle Scholar
Schanz, D., Gesemann, S. & Schrder, A. 2016 Shake-the-box: Lagrangian particle tracking at high particle image densities. Exp. Fluids 57 (5), 127.CrossRefGoogle Scholar
Schmid, P.J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.Google Scholar
Schröder, A. & Schanz, D. 2023 3D Lagrangian particle tracking in fluid mechanics. Annu. Rev. Fluid Mech. 55 (1), 511540.CrossRefGoogle Scholar
Shao, S., Mallery, K., Kumar, S.S. & Hong, J. 2020 Machine learning holography for 3D particle field imaging. Opt. Express 28 (3), 29872999.Google ScholarPubMed
Stoll, V.M., Hess, A.T., Rodgers, C.T., Bissell, M.M., Dyverfeldt, P., Ebbers, T., Myerson, S.G., Carlhäll, C.J. & Neubauer, S. 2019 Left ventricular flow analysis. Circ. Cardiovasc. Imaging 12 (5), e008130.CrossRefGoogle ScholarPubMed
Tancik, M., Srinivasan, P.P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron, J.T. & Ng, R. 2020 Fourier features let networks learn high frequency functions in low dimensional domains, Curran Associates Inc., Vancouver, BC, Canada.Google Scholar
Thandiackal, R. & Lauder, G.V. 2020 How zebrafish turn: analysis of pressure force dynamics and mechanical work. J. Expl Biol. 223 (16), jeb223230.CrossRefGoogle ScholarPubMed
Ting, S.C. & Yang, J.T. 2009 Extracting energetically dominant flow features in a complicated fish wake using singular-value decomposition. Phys. Fluids 21 (4), 041901.CrossRefGoogle Scholar
Triantafyllou, M.S., Triantafyllou, G.S. & Yue, D.K.P. 2000 Hydrodynamics of fishlike swimming. Annu. Rev. Fluid Mech. 32 (1), 3353.Google Scholar
Tu, H., Wang, F.J., Wang, H.P., Gao, Q. & Wei, R.J. 2022 Experimental study on wake flows of a live fish with time-resolved tomographic PIV and pressure reconstruction. Exp. Fluids 63 (1), 25.CrossRefGoogle Scholar
Vallelonga, F., Airale, L., Tonti, G., Argulian, E., Milan, A., Narula, J. & Pedrizzetti, G. 2021 Introduction to hemodynamic forces analysis: moving into the new frontier of cardiac deformation analysis. J. Am. Heart Assoc. 10 (24), e023417.Google ScholarPubMed
Verzicco, R., Iafrati, A., Riccardi, G. & Fatica, M. 1997 Analysis of the sound generated by the pairing of two axisymmetric co-rotating vortex rings. J. Sound Vib. 200 (3), 347358.CrossRefGoogle Scholar
Videler, J.J. & Hess, F. 1984 Fast continuous swimming of two pelagic predators, Saithe ( Pollachius virens ) and Mackerel ( Scomber scombrus ): a kinematic analysis. J. Expl Biol. 109 (1), 209228.CrossRefGoogle Scholar
Wang, C.Y., Gao, Q., Wang, H.P., Wei, R.J., Li, T. & Wang, J.J. 2016 a Divergence-free smoothing for volumetric PIV data. Exp. Fluids 57 (1), 123.Google Scholar
Wang, C.Y., Gao, Q., Wei, R.J., Li, T. & Wang, J.J. 2017 a Spectral decomposition-based fast pressure integration algorithm. Exp. Fluids 58 (7), 84.Google Scholar
Wang, H.P., Gao, Q., Wei, R.J. & Wang, J.J. 2016 b Intensity-enhanced MART for tomographic PIV. Exp. Fluids 57 (5), 87.CrossRefGoogle Scholar
Wang, H.P., He, G.W. & Wang, S.Z. 2020 a Globally optimized cross-correlation for particle image velocimetry. Exp. Fluids 61 (11), 228.CrossRefGoogle Scholar
Wang, H.P., Liu, Y. & Wang, S.Z. 2022 a Dense velocity reconstruction from particle image velocimetry/particle tracking velocimetry using a physics-informed neural network. Phys. Fluids 34 (1), 017116.CrossRefGoogle Scholar
Wang, H.P., Yang, Z.X., Li, B.L. & Wang, S.Z. 2020 b Predicting the near-wall velocity of wall turbulence using a neural network for particle image velocimetry. Phys. Fluids 32 (11), 115105.CrossRefGoogle Scholar
Wang, S.F., Teng, Y.J. & Perdikaris, P. 2021 Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM J. Sci. Comput. 43 (5), A3055A3081.CrossRefGoogle Scholar
Wang, S.F., Yu, X.L. & Perdikaris, P. 2022 b When and why PINNs fail to train: A neural tangent kernel perspective. J. Comput. Phys. 449, 110768.CrossRefGoogle Scholar
Wang, S.Z., Vanella, M. & Balaras, E. 2019 A hydrodynamic stress model for simulating turbulence/particle interactions with immersed boundary methods. J. Comput. Phys. 382, 240263.CrossRefGoogle Scholar
Wang, Z.Y., Gao, Q., Pan, C., Feng, L.H. & Wang, J.J. 2017 b Imaginary particle tracking accelerometry based on time-resolved velocity fields. Exp. Fluids 58 (9), 113.Google Scholar
Wang, Z.Y., Gao, Q., Wang, C.Y., Wei, R.J. & Wang, J.J. 2016 c An irrotation correction on pressure gradient and orthogonal-path integration for PIV-based pressure reconstruction. Exp. Fluids 57 (6), 104.CrossRefGoogle Scholar
Westerweel, J., Elsinga, G.E. & Adrian, R.J. 2013 Particle image velocimetry for complex and turbulent flows. Annu. Rev. Fluid Mech. 45, 409436.CrossRefGoogle Scholar
Wieneke, B. 2008 Volume self-calibration for 3D particle image velocimetry. Exp. Fluids 45 (4), 549556.CrossRefGoogle Scholar
Xu, H., Zhang, W. & Wang, Y. 2021 Explore missing flow dynamics by physics-informed deep learning: the parameterized governing systems. Phys. Fluids 33 (9), 095116.CrossRefGoogle Scholar
Xu, Z.Y., Zhang, X.L., Wang, S.Z. & He, G.W. 2022 Artificial neural network based response surface for data-driven dimensional analysis. J. Comput. Phys. 459, 111145.CrossRefGoogle Scholar
Yu, M., Huang, W.X. & Xu, C.X. 2019 Data-driven construction of a reduced-order model for supersonic boundary layer transition. J. Fluid Mech. 874, 10961114.CrossRefGoogle Scholar
Zhang, X.L., Xiao, H., Luo, X.D. & He, G.W. 2022 Ensemble Kalman method for learning turbulence models from indirect observation data. J. Fluid Mech. 949, A26.CrossRefGoogle Scholar
Zhao, B.D., He, M.M. & Wang, J.W. 2023 Data-driven discovery of the governing equation of granular flow in the homogeneous cooling state using sparse regression. Phys. Fluids 35 (1), 013315.CrossRefGoogle Scholar
Zhou, Z.D., He, G.W. & Yang, X.L. 2021 a Wall model based on neural networks for LES of turbulent flows over periodic hills. Phys. Rev. Fluids 6 (5), 054610.CrossRefGoogle Scholar
Zhou, Z.T., Wang, H.P., Wang, S.Z. & He, G.W. 2021 b Lighthill stress flux model for ffowcs Williams-Hawkings integrals in frequency domain. AIAA J. 59 (11), 48094814.CrossRefGoogle Scholar
Zhu, H.Y., Wang, C.Y., Wang, H.P. & Wang, J.J. 2017 Tomographic PIV investigation on 3D wake structures for flow over a wall-mounted short cylinder. J. Fluid Mech. 831, 743778.CrossRefGoogle Scholar
Zhu, Y.Z., Kong, W.Z., Deng, J. & Bian, X. 2024 Physics-informed neural networks for incompressible flows with moving boundaries. Phys. Fluids 36 (1), 013617.CrossRefGoogle Scholar