Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T16:11:14.887Z Has data issue: false hasContentIssue false

Low-Mach-number asymptotics for two-phase flows of granular materials

Published online by Cambridge University Press:  12 January 2011

C. VARSAKELIS
Affiliation:
Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
M. V. PAPALEXANDRIS*
Affiliation:
Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
*
Email address for correspondence: [email protected]

Abstract

In this paper, we generalize the concept of low-Mach-number approximation to multi-phase flows and apply it to the two-phase flow model of Papalexandris (J. Fluid Mech., vol. 517, 2004, p. 103) for granular materials. In our approach, the governing system of equations is first non-dimensionalized with values that correspond to a reference thermodynamic state of the phase with the smaller speed of sound. By doing so, the Mach number based on this reference state emerges as a perturbation parameter of the equations in hand. Subsequently, we expand each variable in power series of this parameter and apply singular perturbation techniques to derive the low-Mach-number equations. As expected, the resulting equations are considerably simpler than the unperturbed compressible equations. Our methodology is quite general and can be directly applied for the systematic reduction of continuum models for granular materials and for many different types of multi-phase flows. The structure of the low-Mach-number equations for two special cases of particular interest, namely, constant-density flows and the equilibrium limit is also discussed and analysed. The paper concludes with some proposals for experimental validation of the equations.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alazard, T. 2006 Low Mach number limit of the full Navier–Stokes equations. Arch. Rat. Mech. Anal. 180, 173.CrossRefGoogle Scholar
Baer, M. R. & Nunziato, J. W. 1986 A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Intl J. Multiphase Flow 12, 861889.CrossRefGoogle Scholar
Bagnold, R. A. 1954 Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. Lond. A 225, 4963.Google Scholar
Chenoweth, D. R. & Paolucci, S. 1986 Natural convection in an enclosed vertical air layer with large horizontal temperature differences. J. Fluid Mech. 169, 173210.CrossRefGoogle Scholar
Cook, A. W. & Riley, J. J. 1996 Direct numerical simulation of a turbulent reactive plume on a parallel computer. J. Comput. Phys. 129, 263283.CrossRefGoogle Scholar
Drew, A. D. & Passman, S. L. 1999 Theory of Multicomponent Fluids. Springer.CrossRefGoogle Scholar
Feireisl, E. & Novotný, A. 2007 The low Mach number limit for the full Navier–Stokes–Fourier system. Arch. Rat. Mech. Anal. 186, 77107.CrossRefGoogle Scholar
Gallavotti, G. 2002 Foundations of Fluid Dynamics. Springer.CrossRefGoogle Scholar
Goodman, M. A. & Cowin, S. C. 1972 A continuum theory for granular materials. Arch. Rat. Mech. Anal. 44, 249266.CrossRefGoogle Scholar
de Groot, S. R. & Mazur, P. 1984 Non-Equilibrium Thermodynamics. Dover.Google Scholar
Herczynski, A. & Kassoy, D. R. 1991 Response of a confined gas to volumetric heating in the absence of gravity. 1. Slow transients. Phys. Fluids A 3 (4), 566577.CrossRefGoogle Scholar
Jenkins, J. T. & Richmann, M. W. 1986 Boundary conditions for plane flows of smooth, nearly elastic, circular disks. J. Fluid Mech. 171, 5356.CrossRefGoogle Scholar
Klainerman, S. & Majda, A. 1981 Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Maths 34, 481524.CrossRefGoogle Scholar
Knikker, R. 2010 A comparative study of high-order variable-property segregated algorithms for unsteady low Mach number flows. Intl J. Numer. Meth. Fluids. DOI: 10.1002/fld.2179.CrossRefGoogle Scholar
Lebon, D. G., Jou, D. & Casas-Vázquez, J. 2008 Understanding Non-Equilibrium Thermodynamics: Foundations, Applications, Frontiers. Springer.CrossRefGoogle Scholar
LeMetayer, O., Massoni, J. & Saurel, R. 2004 Elaboration des lois d'état d'un liquide et de sa vapeur pour les modèles d'ècoulements diphasiques. Intl J. Therm. Sci. 43, 265276.CrossRefGoogle Scholar
Lessani, B. & Papalexandris, M. V. 2006 Time-accurate calculation of variable density flows with strong temperature gradients and combustion. J. Comput. Phys. 212, 218246.CrossRefGoogle Scholar
Lessani, B. & Papalexandris, M. V. 2008 Numerical study of turbulent channel flow with strong temperature gradients. Intl J. Numer. Meth. Heat Fluid Flow 18, 545556.CrossRefGoogle Scholar
Majda, A. & Sethian, J. 1985 The derivation and numerical solution of the equations for zero Mach number combustion. Combust. Sci. Technol. 42, 185205.CrossRefGoogle Scholar
Najm, H. N., Wyckoff, R. S. & Knio, O. M. 1998 A semi-implicit numerical scheme for reacting flow. Part I. Stiff chemistry. J. Comput. Phys. 143, 381402.CrossRefGoogle Scholar
Papalexandris, M. V. 2004 A two-phase model for compressible granular flows based on the theory of irreversible processes. J. Fluid Mech. 517, 103112.CrossRefGoogle Scholar
Passman, S. L., Nunziato, J. W. & Bailey, P. B. 1986 Shearing motion of a fluid-saturated granular material. J. Rheol. 20, 167192.CrossRefGoogle Scholar
Powers, J. M. 2004 Two-phase viscous modeling of compaction of granular materials. Phys. Fluids 16, 29752990.CrossRefGoogle Scholar
Richmann, M. W. & Chou, C. S. 1988 Boundary effects on granular shear flows of smooth disks. Z. Angew. Math. Phys. 39, 885901.CrossRefGoogle Scholar
Savage, S. B. 1979 Gravity flow of cohesionless granular materials in chutes and channels. J. Fluid Mech. 92, 5396.CrossRefGoogle Scholar
Savage, S. B. & Lun, C. K. K. 1988 Particle size segregation in inclined chute flow of dry cohesionless granular solids. J. Fluid Mech. 189, 311335.CrossRefGoogle Scholar
Savage, S. B. & McKeown, S. 1983 Shear stresses developed during rapid shear of concentrated suspensions of large spherical particles between concentric cylinders. J. Fluid Mech. 127, 453472.CrossRefGoogle Scholar
Svendsen, B. & Hutter, K. 1995 On the thermodynamics of a mixture of isotropic materials with constraints. Intl J. Engng Sci. 1, 20212054.CrossRefGoogle Scholar
Varsakelis, C. & Papalexandris, M. V. 2010 The equilibrium limit of a constitutive model for two-phase granular mixtures and its numerical approximation. J. Comput. Phys. 229, 41834207.CrossRefGoogle Scholar
Volpe, G. 1993 Performance of compressible flow codes at low Mach number regimes. AIAA J. 31, 4956.CrossRefGoogle Scholar
Wang, Y. & Hutter, K. 1999 A constitutive model of multiphase mixtures and its application in shearing flows of saturated solid–fluid mixtures. Granul. Matt. 73, 163181.CrossRefGoogle Scholar
Wang, Y. & Hutter, K. 2006 A thermo-mechanical continuum theory with internal length for cohesionless granular materials. Continuum Mech. Thermodyn. 17 (8), 577607.Google Scholar