Hostname: page-component-599cfd5f84-96rnj Total loading time: 0 Render date: 2025-01-07T06:46:22.613Z Has data issue: false hasContentIssue false

Lorentz force effects in the Bullard–von Kármán dynamo: saturation, energy balance and subcriticality

Published online by Cambridge University Press:  26 June 2015

Sophie Miralles
Affiliation:
Laboratoire de Physique, École Normale Supérieure de Lyon, CNRS & Université de Lyon, 46, Allée d’Italie, 69364 Lyon CEDEX 07, France Institute für Geophysik, ETH Zürich, Sonneggstrasse 5, CH-8092 Zürich, Switzerland
Nicolas Plihon*
Affiliation:
Laboratoire de Physique, École Normale Supérieure de Lyon, CNRS & Université de Lyon, 46, Allée d’Italie, 69364 Lyon CEDEX 07, France
Jean-François Pinton
Affiliation:
Laboratoire de Physique, École Normale Supérieure de Lyon, CNRS & Université de Lyon, 46, Allée d’Italie, 69364 Lyon CEDEX 07, France
*
Email address for correspondence: [email protected]

Abstract

We report an experimental study of a turbulent dynamo in a liquid metal flow. The semi-synthetic dynamo is achieved thanks to an induction process generated by the turbulent shearing motion of liquid gallium and a feedback loop with external amplification, using coils. The external amplification allows the excitation of the dynamo instability at magnetic Reynolds numbers of order-one. This semi-synthetic dynamo is studied here in a regime where saturation is achieved when Lorentz forces modify significantly the bulk flow structure. We describe the supercritical bifurcation, intermittent and saturated regimes, the scalings of the dynamo magnetic field and we detail the power budget. We also report self-killing dynamos for which the dynamo magnetic field cannot be sustained, when the flow is dominated by the action of Lorentz forces, and subcritical regimes in which the flow only sustains a dynamo when it is already dominated by the action of Lorentz forces.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alemany, A., Moreau, R., Sulem, P. L. & Frisch, U. 1979 Influence of an external magnetic field on homogeneous MHD turbulence. J. Méc. 18 (2), 277313.Google Scholar
Alexakis, A. & Ponty, Y. 2008 The Lorentz force effect on the on–off dynamo intermittency. Phys. Rev. E 77, 056308.CrossRefGoogle ScholarPubMed
Aubert, J., Brito, D., Nataf, H.-C., Cardin, P. & Masson, J.-P. 2001 A systematic experimental study of rapidly rotating spherical convection in water and liquid gallium. Phys. Earth Planet. Inter. 128, 5174.CrossRefGoogle Scholar
Aumaître, S., Pétrélis, F. & Mallick, K. 2005 Low-frequency noise controls on–off intermittency of bifurcating systems. Phys. Rev. Lett. 95 (6), 25.Google Scholar
Berhanu, M., Monchaux, R., Fauve, S., Mordant, N., Pétrélis, F., Chiffaudel, A., Daviaud, F., Dubrulle, B., Marié, L., Ravelet, F., Bourgoin, M., Odier, P., Pinton, J.-F. & Volk, R. 2007 Magnetic field reversals in an experimental turbulent dynamo. Eur. Phys. Lett. 77, 59001.Google Scholar
Boisson, J., Aumaître, S., Bonnefoy, N., Bourgoin, M., Daviaud, F., Dubrulle, B., Odier, P., Pinton, J.-F., Plihon, N. & Verhille, G. 2012 Symmetry and couplings in stationary Von Kármán sodium dynamos. New J. Phys. 14, 013044.CrossRefGoogle Scholar
Bourgoin, M., Volk, R., Frick, P., Khripchenko, S., Odier, P. & Pinton, J.-F. 2004 Induction mechanisms in von Karman swirling flows of liquid gallium. Magnetohydrodynamics 40 (1), 1331.Google Scholar
Bourgoin, M., Volk, R., Plihon, N., Augier, P., Odier, P. & Pinton, J.-F. 2006 An experimental Bullard–von Kármán dynamo. New J. Phys. 8 (12), 329, 1–14.CrossRefGoogle Scholar
Brito, D., Cardin, P., Nataf, H.-C. & Marolleau, G. 1995 Experimental study of a geostrophic vortex of gallium in a transverse magnetic field. Phys. Earth Planet. Inter. 91, 7798.CrossRefGoogle Scholar
Bullard, E. C. 1955 The stability of a homopolar dynamo. Proc. Camb. Phil. Soc. 51, 744760.Google Scholar
Cabanes, S., Schaeffer, N. & Nataf, H. C. 2014 Turbulence reduces magnetic diffusivity in a liquid sodium experiment. Phys. Rev. Lett. 113, 184501.Google Scholar
Cattaneo, F. & Tobias, S. 2009 Dynamo properties of the turbulent velocity field of a saturated dynamo. J. Fluid Mech. 621, 205214.CrossRefGoogle Scholar
Colgate, S. A., Beckley, H., Si, J., Martinic, J., Westpfahl, D., Slutz, J., Westrom, C., Klein, B., Schendel, P., Scharle, C., McKinney, T., Ginanni, R., Bentley, I., Mickey, T., Ferrel, R., Li, H., Pariev, V. & Finn, J. 2011 High magnetic shear gain in a liquid sodium stable Couette flow experiment: a prelude to an ${\it\alpha}{-}{\it\omega}$ dynamo. Phys. Rev. Lett. 106, 175003.Google Scholar
Frick, P., Noskov, V., Denisov, S. & Stepanov, R. 2010 Direct measurement of effective magnetic diffusivity in turbulent flow of liquid sodium. Phys. Rev. Lett. 105, 184502.Google Scholar
Fuchs, H., Rädler, K. H. & Rheinhard, M. 1999 On self-killing and self-creating dynamos. Astron. Nachr. Lett. 320, 127131.Google Scholar
Gailitis, A., Lielausis, O., Dement’ev, S., Platacis, E., Cifersons, A., Gerbeth, G., Gundrum, T., Stefani, F., Christen, M., Hanel, H. & Will, G. 2000 Detection of flow induced magnetic field eigenmode in the Riga dynamo facility. Phys. Rev. Lett. 84 (19), 43654368.Google Scholar
Gailitis, A., Lielausis, O., Platacis, E., Gerbeth, G. & Stefani, F. 2003 The Riga dynamo experiment. Surv. Geophys. 24, 247267.CrossRefGoogle Scholar
Giesecke, A., Nore, C., Stefani, F., Gerbeth, G., Léorat, J., Herreman, W., Luddens, F. & Guermond, J.-L. 2012 Influence of high-permeability discs in an axisymmetric model of the Cadarache dynamo experiment. New J. Phys. 14, 053005.Google Scholar
Heagy, J. F., Platt, N. & Hammel, S. M. 1994 Characterization of on off intermittency. Phys. Rev. E 49 (2), 11401150.Google Scholar
Klein, R. & Pothérat, A. 2010 Appearance of three dimensionality in wall bounded MHD flows. Phys. Rev. Lett. 104, 034502.CrossRefGoogle ScholarPubMed
Kuang, W., Jiang, W. & Wang, T. 2008 Sudden termination of Martian dynamo? Implications from subcritical dynamo simulations. Geophys. Res. Lett. 35, L14204.Google Scholar
Miralles, S., Herault, J., Fauve, S., Gissinger, C., Pétrélis, F., Daviaud, F., Dubrulle, B., Boisson, J., Bourgoin, M., Verhille, G., Odier, P., Pinton, J.-F. & Plihon, N. 2014 Dynamo efficiency controlled by hydrodynamic bistability. Phys. Rev. E 89, 063023.Google Scholar
Monchaux, R., Berhanu, M., Aumaître, S., Chiffaudel, A., Daviaud, F., Dubrulle, B., Ravelet, F., Fauve, S., Mordant, N., Pétrélis, F., Bourgoin, M., Odier, P., Pinton, J.-F., Plihon, N. & Volk, R. 2009 The von Kármán sodium experiment: turbulent dynamical dynamos. Phys. Fluids 21, 035108.Google Scholar
Monchaux, R., Berhanu, M., Bourgoin, M., Moulin, M., Odier, P., Pinton, J.-F., Volk, R., Fauve, S., Mordant, N., Pétrélis, F., Chiffaudel, A., Daviaud, D., Dubrulle, B., Gasquet, C., Marie, L. & Ravelet, F. 2007 Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium. Phys. Rev. Lett. 98 (4), 14.Google Scholar
Müller, U., Stieglitz, R. & Horanyi, S. 2004 A two-scale hydromagnetic dynamo experiment. J. Fluid Mech. 498, 3171.Google Scholar
Nore, C., Léorat, J., Guermond, J.-L. & Giesecke, A. 2015 Mean-field model of the von Karman sodium experiment using soft iron impellers. Phys. Rev. E 91, 013008.Google Scholar
Nornberg, M. D., Spence, E. J., Kendrick, R. D., Jacobson, C. M. & Forest, C. B. 2006 Measurements of the magnetic field induced by a turbulent flow of liquid metal. Phys. Plasmas 13, 055901.Google Scholar
Ott, E. & Sommerer, J. C. 1994 Blowout bifurcations: the occurrence of riddled basins and on–off intermittency. Phys. Lett. A 188, 3947.Google Scholar
Peffley, N. L., Cawthorne, A. B. & Lathrop, D. P. 2000 Toward a self-generating dynamo: the role of turbulence. Phys. Rev. E 61 (5), 52875294.Google Scholar
Ponty, Y., Laval, J.-P., Dubrulle, B., Daviaud, F. & Pinton, J.-F. 2007 Subcritical dynamo bifurcation in the Taylor–Green flow. Phys. Rev. Lett. 99, 224501.Google Scholar
Ravelet, F., Chiffaudel, A. & Daviaud, F. 2008 Supercritical transition to turbulence in an inertially driven von Kármán closed flow. J. Fluid Mech. 601, 339364.Google Scholar
Ravelet, F., Chiffaudel, A., Daviaud, F. & Léorat, J. 2005 Toward an experimental von Kármán dynamo: numerical studies for an optimized design. Phys. Fluids 17, 117104.Google Scholar
Raynaud, R. & Dormy, E. 2013 Intermittency in spherical Couette dynamos. Phys. Rev. E 87, 033011.Google Scholar
Reuter, K., Jenko, F. & Forest, C. B. 2009 Hysteresis cycle in a turbulent, spherically bounded MHD dynamo model. New J. Phys. 11, 013027.Google Scholar
Rincon, F., Ogilvie, G. I. & Proctor, M. R. E. 2007 Self-sustaining nonlinear dynamo process in Keplerian shear flows. Phys. Rev. Lett. 98, 254502.Google Scholar
Roberts, P. H. & Glatzmaier, G. 2000 Geodynamo theory and simulations. Rev. Mod. Phys. 72 (4), 10811123.CrossRefGoogle Scholar
Sisan, D. R., Shew, W. L. & Lathrop, D. P. 2002 Lorentz force effects in magneto-turbulence. Phys. Earth Planet. Inter. 135, 137159.CrossRefGoogle Scholar
Sommeria, J. & Moreau, R. 1982 Why, how and when MHD turbulence becomes two-dimensional. J. Fluid Mech. 118, 507518.CrossRefGoogle Scholar
Sreenivasan, B. & Jones, C. A. 2011 Helicity generation and subcritical behaviour in rapidly rotating dynamos. J. Fluid Mech. 688, 530.Google Scholar
Stefani, F., Xu, M., Gerbeth, G., Ravelet, F., Chiffaudel, A., Daviaud, F. & Léorat, J. 2006 Ambivalent effects of added layers on steady kinematic dynamos in cylindrical geometry: application to the VKS experiment. Eur. J. Mech. B 25, 894908.Google Scholar
Stieglitz, R. & Müller, U. 2001 Experimental demonstration of a homogeneous two-scale dynamo. Phys. Fluids 13, 561564.Google Scholar
Sweet, D., Ott, E., Antonsen, M., Lathrop, D. P. & Finn, J. M. 2001 Blowout bifurcations and the onset of magnetic dynamo action. Phys. Plasmas 8, 19441952.Google Scholar
Takeda, Y. 1995 Velocity profile measurement by ultrasonic doppler method. Exp. Therm. Fluid Sci. 94, 444453.Google Scholar
Tilgner, A. & Brandenburg, A. 2008 A growing dynamo from a saturated Roberts flow dynamo. Mon. Not. R. Astron. Soc. 391, 14771481.Google Scholar
Valet, J., Meynadier, L. & Guyodo, Y. 2005 Geomagnetic dipole strength and reversal rate over the past two million years. Nature 435, 58.CrossRefGoogle ScholarPubMed
Verhille, G., Khalilov, R., Plihon, N., Frick, P. & Pinton, J.-F. 2012 Transition from hydrodynamic turbulence to magnetohydrodynamic turbulence in von Kármán flows. J. Fluid Mech. 693, 243260.CrossRefGoogle Scholar
Verhille, G., Plihon, N., Bourgoin, M., Odier, P. & Pinton, J.-F. 2010 Laboratory dynamo experiments. Space Sci. Rev. 152, 543564.Google Scholar
Verhille, G., Plihon, N., Fanjat, G., Volk, R., Bourgoin, M. & Pinton, J.-F. 2010 Large scale fluctuations and dynamics of the Bullard–von Kármán dynamo. Geophys. Astrophys. Fluid Dyn. 104 (2), 189205.Google Scholar