Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-04T10:48:39.010Z Has data issue: false hasContentIssue false

Long ring waves in a stratified fluid over a shear flow

Published online by Cambridge University Press:  30 March 2016

Karima R. Khusnutdinova*
Affiliation:
Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UK
Xizheng Zhang
Affiliation:
Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UK
*
Email address for correspondence: [email protected]

Abstract

Oceanic waves registered by satellite observations often have curvilinear fronts and propagate over various currents. In this paper we study long linear and weakly nonlinear ring waves in a stratified fluid in the presence of a depth-dependent horizontal shear flow. It is shown that, despite the clashing geometries of the waves and the shear flow, there exists a linear modal decomposition (different from the known decomposition in Cartesian geometry), which can be used to describe distortion of the wavefronts of surface and internal waves, and systematically derive a $2+1$-dimensional cylindrical Korteweg–de Vries-type equation for the amplitudes of the waves. The general theory is applied to the case of the waves in a two-layer fluid with a piecewise-constant current, with an emphasis on the effect of the shear flow on the geometry of the wavefronts. The distortion of the wavefronts is described by the singular solution (envelope of the general solution) of the nonlinear first-order differential equation, constituting generalisation of the dispersion relation in this curvilinear geometry. There exists a striking difference in the shapes of the wavefronts of surface and interfacial waves propagating over the same shear flow.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ablowitz, M. J. & Baldwin, D. E. 2012 Nonlinear shallow ocean wave soliton interactions on flat beaches. Phys. Rev. E 86, 036305.CrossRefGoogle ScholarPubMed
Alias, A., Grimshaw, R. H. J. & Khusnutdinova, K. R. 2014 Coupled Ostrovsky equations for internal waves in a shear flow. Phys. Fluids 26, 126603.CrossRefGoogle Scholar
Apel, J. R. 2003 A new analytical model for internal solitons in the ocean. J. Phys. Oceanogr. 33, 22472269.Google Scholar
Apel, J. R., Ostrovsky, L. A., Stepanyants, Y. A. & Lynch, J. F. 2007 Internal solitons in the ocean and their effect on underwater sound. J. Acoust. Soc. Am. 121, 695722.CrossRefGoogle ScholarPubMed
Arkhipov, D. G., Safarova, N. S. & Khabakhpashev, G. A. 2014 Dynamics of nonlinear three-dimensional waves on the interface between two fluids in a channel with low-sloping bottom and top. Fluid Dyn. 49, 491503.Google Scholar
Barros, R. & Choi, W. 2014 Elementary stratified flows with stability at low Richardson number. Phys. Fluids 26, 124107.Google Scholar
Benjamin, T. B. 1966 Internal waves of finite amplitude and permanent form. J. Fluid Mech. 25, 241270.Google Scholar
Benjamin, T. B. 1967 Internal waves of permanent form in fluids of great depths. J. Fluid Mech. 29, 559592.CrossRefGoogle Scholar
Benney, D. J. 1966 Long nonlinear waves in fluid flows. J. Math. Phys. 45, 5263.Google Scholar
Bontozoglou, V. 1991 Weakly nonlinear Kelvin–Helmholtz waves between fluids of finite depth. Intl J. Multiphase Flow 17, 509518.Google Scholar
Boonkasame, A. & Milewski, P. A. 2011 The stability of large-amplitude shallow interfacial non-Boussinesq flows. Stud. Appl. Maths 128, 4058.Google Scholar
Boonkasame, A. & Milewski, P. A. 2014 A model for strongly nonlinear long interfacial waves with background shear. Stud. Appl. Maths 133, 182213.CrossRefGoogle Scholar
Boussinesq, J. 1871 Théorie de l’intumescence liquide appelée onde solitaire ou de translation, se propageant dans un canal rectangulaire. C. R. Acad. Sci. Paris 72, 755759.Google Scholar
Buhler, O. 2009 Waves and Mean Flows. Cambridge University Press.Google Scholar
Burns, J. C. 1953 Long waves in running water. Proc. Camb. Phil. Soc. 49, 695706.Google Scholar
Calogero, F. & Degasperis, A. 1978 Solution by the spectral transform method of a nonlinear evolution equation including as a special case the cylindrical KdV equation. Lett. Nuovo Cimento 23, 150154.Google Scholar
Chakravarty, S. & Kodama, Y. 2014 Construction of KP solitons from wave patterns. J. Phys. A 47, 025201.Google Scholar
Choi, W. 2006 The effect of a background shear current on large amplitude internal solitary waves. Phys. Fluids 24, 17.Google Scholar
Choi, W. & Camassa, R. 1999 Fully nonlinear internal waves in a two-fluid system. J. Fluid Mech. 396, 136.Google Scholar
Chumakova, L., Menzaque, F. E., Milewski, P. A., Rosales, R. R., Tabak, E. G. & Turner, C. V. 2009 Stability properties and nonlinear mappings of two and three-layer stratified flows. Stud. Appl. Maths 122, 123137.Google Scholar
Craik, A. D. D. 1985 Wave Interactions and Fluid Flows. Cambridge University Press.Google Scholar
Drazin, P. G. & Reed, W. H. 2004 Hydrodynamic Stability. Cambridge University Press.Google Scholar
Druma, V. S. 1976 Analytical solution of the axially symmetric KdV equation. Izv. Akad. Nauk MSSR 3, 1416 (in Russian).Google Scholar
Ellingsen, S. A. 2014a Ship waves in the presence of uniform vorticity. J. Fluid Mech. 742, R2, 111.Google Scholar
Ellingsen, S. A. 2014b Initial surface disturbance on a shear current: the Cauchy–Poisson problem with a twist. Phys. Fluids 26, 082104.CrossRefGoogle Scholar
Farmer, D. M. & Armi, L. 1988 The flow of Atlantic water through the Strait of Gibraltar. Prog. Oceanogr. 21, 1105.CrossRefGoogle Scholar
Freeman, N. C. & Johnson, R. S. 1970 Shallow water waves on shear flows. J. Fluid Mech. 42, 401409.CrossRefGoogle Scholar
Grimshaw, R. H. J. 2001 Internal solitary waves. In Environmental Stratified Flows (ed. Grimshaw, R.), pp. 127. Kluwer.Google Scholar
Grimshaw, R. H. J., Helfrich, K. R. & Johnson, E. R. 2013 Experimental study of the effect of rotation on large amplitude internal waves. Phys. Fluids 25, 056602.Google Scholar
Grimshaw, R. H. J., Ostrovsky, L. A., Shrira, V. I. & Stepanyants, Yu. A. 1998 Long nonlinear surface and internal gravity waves in a rotating ocean. Surv. Geophys. 19, 289338.Google Scholar
Grimshaw, R. H. J., Pelinovsky, E. & Talipova, T. 1997 The modified Korteweg–de Vries equation in the theory of large-amplitude internal waves. Nonlinear Process. Geophys. 4, 237250.Google Scholar
Grue, J. 2006 Very large internal waves in the ocean – observations and nonlinear models. In Waves in Geophysical Fluids (ed. Grue, J. & Trulsen, K.), pp. 166. Springer.Google Scholar
Grue, J. 2015 Nonlinear interfacial wave formation in three dimensions. J. Fluid Mech. 767, 735762.Google Scholar
Helfrich, K. R. & Melville, W. K. 2006 Long nonlinear internal waves. Annu. Rev. Fluid Mech. 38, 395425.CrossRefGoogle Scholar
Jackson, C. R., Da Silva, J. C., Jeans, G., Alpers, W. & Caruso, M. J. 2013 Nonlinear internal waves in synthetic aperture radar imagery. Oceanography 26, 6879.Google Scholar
Johnson, R. S. 1980 Water waves and Korteweg–de Vries equations. J. Fluid Mech. 97, 701719.Google Scholar
Johnson, R. S. 1990 Ring waves on the surface of shear flows: a linear and nonlinear theory. J. Fluid Mech. 215, 145160.Google Scholar
Johnson, R. S. 1997 A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge University Press.Google Scholar
Johnson, R. S. 2012 Models for the formation of a critical layer in water wave propagation. Phil. Trans. R. Soc. Lond. 370, 16381660.Google ScholarPubMed
Joseph, R. I. 1977 Solitary waves in a finite depth fluid. J. Phys. A: Math. Gen. 10, L1225L1227.Google Scholar
Klein, C., Matveev, V. B. & Smirnov, A. O. 2007 The cylindrical Kadomtsev–Petviashvili equation: old and new results. Theor. Math. Phys. 152, 11321145.Google Scholar
Korteweg, D. J. & de Vries, G. 1895 On the change of form of long waves advancing in a rectangular channel, and on a new type of long stationary waves. Phil. Mag. 39, 422443.Google Scholar
Kubota, T., Ko, D. R. & Dobbs, L. 1978 Weakly-nonlinear long internal waves in a stratified fluid of finite depth. J. Hydronaut. 12, 157165.Google Scholar
Lannes, D. & Ming, M. 2015 The Kelvin–Helmholtz instabilities in two-fluids shallow water models. In Hamiltonian Partial Differential Equations and Applications, Fields Institute Communications, vol. 75. Springer.Google Scholar
Lee, C.-Y. & Beardsley, R. C. 1974 The generation of long nonlinear internal waves in a weakly stratified shear flow. J. Geophys. Res. 79, 453462.CrossRefGoogle Scholar
Lipovskii, V. D. 1985 On the nonlinear internal wave theory in fluid of finite depth. Izv. Akad. Nauk SSSR Ser. Fiz. 21, 864871.Google Scholar
Long, R. R. 1955 Long waves in a two-fluid system. J. Met. 13, 7074.Google Scholar
Maslowe, S. A. & Redekopp, L. G. 1980 Long nonlinear waves in stratified shear flows. J. Fluid Mech. 101, 321348.Google Scholar
Maxon, S. & Viecelli, J. 1974 Cylindrical solitons. Phys. Fluids 17, 16141616.Google Scholar
Miyata, M. 1985 An internal solitary wave of large amplitude. La Mer. 23, 4348.Google Scholar
Miles, J. W. 1978 An axisymmetric Boussinesq wave. J. Fluid Mech. 84, 181191.CrossRefGoogle Scholar
Nash, J. D. & Moum, J. N. 2005 River plumes as a source of large-amplitude internal waves in the coastal ocean. Nature 437, 400403.Google Scholar
Nwogu, O. G. 2009 Interaction of finite-amplitude waves with vertically sheared current fields. J. Fluid Mech. 627, 179213.CrossRefGoogle Scholar
Ono, H. 1975 Algebraic solitary waves in stratified fluid. J. Phys. Soc. Japan 39, 10821091.Google Scholar
Ovsyannikov, L. V. 1979 Two-layer ‘shallow water’ model. J. Appl. Meth. Tech. Phys. 20, 127135.Google Scholar
Ovsyannikov, L. V. 1985 Nonlinear Problems in the Theory of Surface and Internal Waves. Nauka (in Russian).Google Scholar
Ramirez, C., Renouard, D. & Stepanyants, Yu. A. 2002 Propagation of cylindrical waves in a rotating fluid. Fluid Dyn. Res. 30, 169196.Google Scholar
Sannino, G., Sanchez Garrido, J. C., Liberti, L. & Pratt, L. 2014 Exchange flow through the Strait of Gibraltar as simulated by a ${\it\sigma}$ -coordinate hydrostatic model and a $z$ -coordinate nonhydrostatic model. In The Mediterranean Sea: Temporal Variability and Spatial Patterns (ed. Gianluca, E. B., Miroslav, G., Piero, L. & Paola, M.-R.), AGU Book, Wiley.Google Scholar
Stastna, M. & Lamb, K. G. 2002 Large fully nonlinear solitary waves: the effect of background current. Phys. Fluids 14, 29872999.Google Scholar
Stastna, M. & Walter, R. 2014 Transcritical generation of nonlinear internal waves in the presence of background shear flow. Phys. Fluids 26, 086601.Google Scholar
Thomas, R., Kharif, C. & Manna, M. 2012 A nonlinear Schrödinger equation for water waves on finite depth with constant vorticity. Phys. Fluids 24, 127102.Google Scholar
Turner, J. S. 1973 Buoyancy Effects in Fluids. Cambridge University Press.Google Scholar
Vlasenko, V., Sanchez Garrido, J. C., Stashchuk, N., Garcia Lafuente, J. & Losada, M. 2009 Three-dimensional evolution of large-amplitude internal waves in the Strait of Gibraltar. J. Phys. Oceanogr. 39, 22302246.CrossRefGoogle Scholar
Vlasenko, V., Stashchuk, N., Inall, M. E. & Hopkins, J. E. 2014 Tidal energy conversion in a global hot spot: on the 3-D dynamics of baroclinic tides at the Celtic Sea shelf break. Phys. Fluids 24, 127102.Google Scholar
Vlasenko, V., Stashchuk, N., Palmer, M. R. & Inall, M. E. 2013 Generation of baroclinic tides over an isolated underwater bank. J. Geophys. Res. 118, 43954408.Google Scholar
Voronovich, V. V., Sazonov, I. A. & Shrira, V. I. 2006 On radiating solitons in a model of the internal wave – shear flow resonance. J. Fluid Mech. 568, 273301.Google Scholar
Weidman, P. D. & Zakhem, R. 1988 Cylindrical solitary waves. J. Fluid Mech. 191, 557573.Google Scholar