Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-12-01T02:45:46.740Z Has data issue: false hasContentIssue false

Local and global pairing instabilities of two interlaced helical vortices

Published online by Cambridge University Press:  31 January 2019

Hugo Umberto Quaranta
Affiliation:
IRPHE, CNRS, Aix-Marseille Université, Centrale Marseille, 13384 Marseille, France Aerodynamics Department, Airbus Helicopters, 13725 Marignane, France
Mattias Brynjell-Rahkola
Affiliation:
Linné FLOW Centre, Department of Mechanics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
Thomas Leweke*
Affiliation:
IRPHE, CNRS, Aix-Marseille Université, Centrale Marseille, 13384 Marseille, France
Dan S. Henningson
Affiliation:
Linné FLOW Centre, Department of Mechanics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
*
Email address for correspondence: [email protected]

Abstract

We investigate theoretically and experimentally the stability of two interlaced helical vortices with respect to displacement perturbations having wavelengths that are large compared to the size of the vortex cores. First, existing theoretical results are recalled and applied to the present configuration. Various modes of unstable perturbations, involving different phase relationships between the two vortices, are identified and their growth rates are calculated. They lead to a local pairing of neighbouring helix loops, or to a global pairing with one helix expanding and the other one contracting. A relation is established between this instability and the three-dimensional pairing of arrays of straight parallel vortices, and a striking quantitative agreement concerning the growth rates and frequencies is found. This shows that the local pairing of vortices is the driving mechanism behind the instability of the helix system. Second, an experimental study designed to observe these instabilities in a real flow is presented. Two helical vortices are generated by a two-bladed rotor in a water channel and characterised through dye visualisations and particle image velocimetry measurements. Unstable displacement modes are triggered individually, either by varying the rotation frequency of the rotor, or by imposing a small rotor eccentricity. The observed unstable mode structure, and the corresponding growth rates obtained from advanced processing of visualisation sequences, are in good agreement with theoretical predictions. The nonlinear late stages of the instability are also documented experimentally. Whereas local pairing leads to strong deformations and subsequent breakup of the vortices, global pairing results in a leapfrogging phenomenon, which temporarily restores the initial double-helix geometry, in agreement with recent observations from numerical simulations.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfredsson, P. H. & Dahlberg, J. A.1979 A preliminary wind tunnel study of windmill wake dispersion in various flow conditions. Tech. Rep. AU-1499. FFA, Stockholm, Sweden.Google Scholar
Batchelor, G. K. 1964 Axial flow in trailing line vortices. J. Fluid Mech. 20, 645658.10.1017/S0022112064001446Google Scholar
Bolnot, H.2012 Instabilités des tourbillons hélicoïdaux: application au sillage des rotors. PhD thesis, Aix-Marseille Université, Marseille, France.Google Scholar
Brown, D.2017 Tracker – video analysis and modeling tool. https://physlets.org/tracker/.Google Scholar
Cheng, M., Lou, J. & Lim, T. T. 2015 Leapfrogging of multiple coaxial viscous vortex rings. Phys. Fluids 27, 031702.10.1063/1.4915890Google Scholar
Crow, S. C. 1970 Stability theory of a pair of trailing vortices. AAIA J. 8, 21722179.10.2514/3.6083Google Scholar
Fabre, D.2002 Instabilités et instationarités dans les tourbillons: application au sillages des avions. PhD thesis, Université Pierre et Marie Curie–Paris VI, Paris, France.Google Scholar
Felli, M., Camussi, R. & Di Felice, F. 2011 Mechanisms of evolution of the propeller wake in the transition and far fields. J. Fluid Mech. 682, 553.10.1017/jfm.2011.150Google Scholar
Gupta, B. P. & Loewy, R. G. 1974 Theoretical analysis of the aerodynamics stability of multiple, interdigitated helical vortices. AIAA J. 12, 13811387.10.2514/3.49493Google Scholar
Hardin, J. C. 1982 The velocity field induced by a helical vortex filament. Phys. Fluids 25, 19491952.10.1063/1.863684Google Scholar
Ivanell, S., Mikkelsen, R., Sørensen, J. N. & Henningson, D. 2010 Stability analysis of the tip vortices of a wind turbine. Wind Energy 13, 705715.10.1002/we.391Google Scholar
Kawada, S. 1936 Induced velocity by helical vortices. J. Aeronaut. Sci. 3, 8687.10.2514/8.141Google Scholar
Lamb, H. 1932 Hydrodynamics, § 156. Cambridge University Press.Google Scholar
Leishman, J. G. 2006 Principles of Helicopter Aerodynamics. Cambridge University Press.Google Scholar
Leishman, J. G., Bhagwat, M. J. & Ananthan, S. 2004 The vortex ring state as a spatially and temporally developing wake instability. J. Am. Helicopter Soc. 49, 160175.10.4050/JAHS.49.160Google Scholar
Leweke, T., Le Dizès, S. & Williamson, C. H. K. 2016 Dynamics and instabilities of vortex pairs. Annu. Rev. Fluid Mech. 48, 507541.10.1146/annurev-fluid-122414-034558Google Scholar
Leweke, T., Quaranta, H. U., Bolnot, H., Blanco-Rodríguez, F. J. & Le Dizès, S. 2014 Long- and short-wave instabilities in helical vortices. J. Phys.: Conf. Ser. 524, 012154.Google Scholar
Meliga, P., Gallaire, F. & Chomaz, J.-M. 2012 A weakly nonlinear mechanism for mode selection in swirling jets. J. Fluid Mech. 699, 216262.10.1017/jfm.2012.93Google Scholar
Moore, D. W. 1972 Finite amplitude waves on aircraft trailing vortices. Aeronaut. Q. 23, 307314.Google Scholar
Moore, D. W. & Saffman, P. G. 1973 Axial flow in laminar trailing vortices. Proc. R. Soc. Lond. A 333, 491508.10.1098/rspa.1973.0075Google Scholar
Nemes, A., Lo Jacono, D., Blackburn, H. M. & Sheridan, J. 2015 Mutual inductance of two helical vortices. J. Fluid Mech. 774, 298310.10.1017/jfm.2015.288Google Scholar
Okulov, V. L. 2004 On the stability of multiple helical vortices. J. Fluid Mech. 521, 319342.10.1017/S0022112004001934Google Scholar
Okulov, V. L. & Sørensen, J. N. 2010 Applications of 2D helical vortex dynamics. Theor. Comput. Fluid Dyn. 24, 395401.10.1007/s00162-009-0136-3Google Scholar
Phillips, W. R. C. 1981 The turbulent trailing vortex during roll-up. J. Fluid Mech. 105, 451467.10.1017/S0022112081003285Google Scholar
Quaranta, H. U., Bolnot, H. & Leweke, T. 2015 Long-wave instability of a helical vortex. J. Fluid Mech. 780, 687716.10.1017/jfm.2015.479Google Scholar
Robinson, A. C. & Saffman, P. G. 1982 Three-dimensional stability of vortex arrays. J. Fluid Mech. 125, 411427.10.1017/S0022112082003413Google Scholar
Rosenhead, L. 1930 The spread of vorticity in the wake behind a cylinder. Proc. R. Soc. Lond. A 127, 590612.10.1098/rspa.1930.0078Google Scholar
Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.Google Scholar
Sarmast, S., Dadfar, R., Mikkelsen, R. F., Schlatter, P., Ivanell, S., Sørensen, J. N. & Henningson, D. S. 2014 Mutual inductance instability of the tip vortices behind a wind turbine. J. Fluid Mech. 755, 705731.10.1017/jfm.2014.326Google Scholar
Selçuk, C., Delbende, I. & Rossi, M. 2018 Helical vortices: linear stability analysis and nonlinear dynamics. Fluid Dyn. Res. 50, 011411.10.1088/1873-7005/aa73e3Google Scholar
Selçuk, S. C.2016 Numerical study of helical vortices and their instabilities. PhD thesis, Université Pierre et Marie Curie, Paris, France.Google Scholar
Selig, M. S., Guglielmo, J. J., Broeren, A. P. & Giguere, P. 1995 Summary of Low-Speed Airfoil Data. SoarTech.Google Scholar
Sørensen, J. N. 2011 Instability of helical tip vortices in rotor wakes. J. Fluid Mech. 682, 14.10.1017/jfm.2011.277Google Scholar
Sørensen, J. N. & Shen, W. Z. 2002 Numerical modeling of wind turbine wakes. Trans. ASME J. Fluids Engng 124, 393399.10.1115/1.1471361Google Scholar
Vermeer, L. J., Sørensen, J. N. & Crespo, A. 2003 Wind turbine wake aerodynamics. Prog. Aerosp. Sci. 39, 467510.10.1016/S0376-0421(03)00078-2Google Scholar
Widnall, S. E. 1972 The stability of a helical vortex filament. J. Fluid Mech. 54, 641663.10.1017/S0022112072000928Google Scholar
Widnall, S. E., Bliss, D. B. & Zalay, A. 1971 Theoretical and experimental study of the instability of a vortex pair. In Aircraft Wake Turbulence and its Detection (ed. Olsen, J. H., Goldberg, A. & Rogers, M.), pp. 305338. Plenum.10.1007/978-1-4684-8346-8_19Google Scholar