Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T03:28:57.409Z Has data issue: false hasContentIssue false

Local and global force balance for diffusiophoretic transport

Published online by Cambridge University Press:  01 April 2020

S. Marbach
Affiliation:
Ecole Normale Supérieure, PSL Research University, CNRS, 24 rue Lhomond, Paris75005, France Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street,New York, NY10012, USA
H. Yoshida
Affiliation:
Ecole Normale Supérieure, PSL Research University, CNRS, 24 rue Lhomond, Paris75005, France Toyota Central R&D Labs., Inc., Bunkyo-ku, Tokyo 112-0004, Japan
L. Bocquet*
Affiliation:
Ecole Normale Supérieure, PSL Research University, CNRS, 24 rue Lhomond, Paris75005, France
*
Email address for correspondence: [email protected]

Abstract

Electro- and diffusio-phoresis of particles correspond respectively to the transport of particles under electric field and solute concentration gradients. Such interfacial transport phenomena take their origin in a diffuse layer close to the particle surface, and the motion of the particle is force free. In the case of electrophoresis, it is further expected that the stress acting on the moving particle vanishes locally as a consequence of local electroneutrality. But the argument does not apply to diffusiophoresis, which takes its origin in solute concentration gradients. In this paper we investigate further the local and global force balance on a particle undergoing diffusiophoresis. We calculate the local tension applied on the particle surface and show that, counter-intuitively, the local force on the particle does not vanish for diffusiophoresis, in spite of the global force being zero, as expected. Incidentally, our description allows us to clarify the osmotic balance in diffusiophoresis, which has been a source of debate in recent years. We explore various cases, including hard and soft interactions, as well as porous particles, and provide analytic predictions for the local force balance in these various systems. The existence of local stresses may induce deformation of soft particles undergoing diffusiophoresis, hence suggesting applications in terms of particle separation based on capillary diffusiophoresis.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abécassis, B., Cottin-Bizonne, C., Ybert, C., Ajdari, A. & Bocquet, L. 2008 Boosting migration of large particles by solute contrasts. Nat. Mater. 7 (10), 785789.CrossRefGoogle ScholarPubMed
Ajdari, A. & Bocquet, L. 2006 Giant amplification of interfacially driven transport by hydrodynamic slip: diffusio-osmosis and beyond. Phys. Rev. Lett. 96 (18), 186102.CrossRefGoogle ScholarPubMed
Anderson, J. L. 1989 Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 21 (1), 6199.CrossRefGoogle Scholar
Anderson, J. L., Lowell, M. E. & Prieve, D. C. 1982 Motion of a particle generated by chemical gradients. Part 1. Non-electrolytes. J. Fluid Mech. 117, 107121.CrossRefGoogle Scholar
Anderson, J. L. & Prieve, D. C. 1991 Diffusiophoresis caused by gradients of strongly adsorbing solutes. Langmuir 7 (2), 403406.CrossRefGoogle Scholar
Brady, J. F. 2011 Particle motion driven by solute gradients with application to autonomous motion: continuum and colloidal perspectives. J. Fluid Mech. 667, 216259.CrossRefGoogle Scholar
Córdova-Figueroa, U. M. & Brady, J. F. 2008 Osmotic propulsion: the osmotic motor. Phys. Rev. Lett. 100 (15), 158303.CrossRefGoogle ScholarPubMed
Córdova-Figueroa, U. M. & Brady, J. F. 2009a Córdova-Figueroa and Brady reply. Phys. Rev. Lett. 103, 079802.CrossRefGoogle Scholar
Córdova-Figueroa, U. M. & Brady, J. F. 2009b Córdova-Figueroa and Brady reply. Phys. Rev. Lett. 102, 159802.CrossRefGoogle Scholar
Córdova-Figueroa, U. M., Brady, J. F. & Shklyaev, S. 2013 Osmotic propulsion of colloidal particles via constant surface flux. Soft Matt. 9 (28), 63826390.CrossRefGoogle Scholar
Debye, P. 1923 Théorie cinétique des lois de la pression osmotique des électrolytes forts. Recueil des Travaux Chimiques des Pays-Bas 42 (7), 597604.CrossRefGoogle Scholar
Derjaguin, B. V. 1987 Some results from 50 years’ research on surface forces. In Surface Forces and Surfactant Systems, pp. 1730. Springer.CrossRefGoogle Scholar
Fischer, T. M. & Dhar, P. 2009 Comment on osmotic propulsion: the osmotic motor. Phys. Rev. Lett. 102 (15), 159801.CrossRefGoogle ScholarPubMed
Happel, J. & Brenner, H. 2012 Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media, vol. 1. Springer Science and Business Media.Google Scholar
Hermans, J. J. 1955 Sedimentation and electrophoresis of porous spheres. J. Polym. Sci. 18 (90), 527534.CrossRefGoogle Scholar
Huang, C.-H., Hsu, H.-P. & Lee, E. 2012 Electrophoretic motion of a charged porous sphere within micro-and nanochannels. Phys. Chem. Chem. Phys. 14 (2), 657667.CrossRefGoogle ScholarPubMed
Jiang, H.-R. & Sano, M. 2007 Stretching single molecular dna by temperature gradient. Appl. Phys. Lett. 91 (15), 154104.CrossRefGoogle Scholar
Joseph, D. D. & Tao, L. N. 1964 The effect of permeability on the slow motion of a porous sphere in a viscous liquid. Z. Angew. Math. Mech. 44 (8–9), 361364.CrossRefGoogle Scholar
Jülicher, F. & Prost, J. 2009 Comment on ‘osmotic propulsion: the osmotic motor’. Phys. Rev. Lett. 103 (7), 079801.CrossRefGoogle Scholar
Long, D., Viovy, J.-L. & Ajdari, A. 1996 Simultaneous action of electric fields and nonelectric forces on a polyelectrolyte: motion and deformation. Phys. Rev. Lett. 76 (20), 38583861.CrossRefGoogle ScholarPubMed
Mandal, S., Bandopadhyay, A. & Chakraborty, S. 2016 Effect of surface charge convection and shape deformation on the dielectrophoretic motion of a liquid drop. Phys. Rev. E 93 (4), 043127.Google ScholarPubMed
Manning, G. S. 1968 Binary diffusion and bulk flow through a potential-energy profile: a kinetic basis for the thermodynamic equations of flow through membranes. J. Chem. Phys. 49 (6), 26682675.CrossRefGoogle Scholar
Marbach, S. & Bocquet, L. 2019 Osmosis, from molecular insights to large-scale applications. Chem. Soc. Rev. 48 (11), 31023144.CrossRefGoogle ScholarPubMed
Marbach, S., Yoshida, H. & Bocquet, L. 2017 Osmotic and diffusio-osmotic flow generation at high solute concentration. I. Mechanical approaches. J. Chem. Phys. 146 (19), 194701.Google ScholarPubMed
Michelin, S. & Lauga, E. 2014 Phoretic self-propulsion at finite Péclet numbers. J. Fluid Mech. 747, 572604.CrossRefGoogle Scholar
Möller, F. M., Kriegel, F., Kieß, M., Sojo, V. & Braun, D. 2017 Steep pH gradients and directed colloid transport in a microfluidic alkaline hydrothermal pore. Angew. Chem. Intl Ed. Engl. 56 (9), 23402344.CrossRefGoogle Scholar
Moran, J. L. & Posner, J. D. 2017 Phoretic self-propulsion. Annu. Rev. Fluid Mech. 49, 511540.CrossRefGoogle Scholar
Nagle, J. F. 2013 Introductory lecture: basic quantities in model biomembranes. Faraday Discuss. 161, 1129.CrossRefGoogle ScholarPubMed
O’Brien, R. W. & White, L. R. 1978 Electrophoretic mobility of a spherical colloidal particle. J. Chem. Soc. Faraday Trans. 74, 16071626.CrossRefGoogle Scholar
Ohshima, H. 1994 Electrophoretic mobility of soft particles. J. Colloid Interface Sci. 163 (2), 474483.CrossRefGoogle Scholar
Ohshima, H., Healy, T. W. & White, L. R. 1983 Approximate analytic expressions for the electrophoretic mobility of spherical colloidal particles and the conductivity of their dilute suspensions. J. Chem. Soc. Faraday Trans. 79 (11), 16131628.CrossRefGoogle Scholar
Palacci, J., Abécassis, B., Cottin-Bizonne, C., Ybert, C. & Bocquet, L. 2010 Colloidal motility and pattern formation under rectified diffusiophoresis. Phys. Rev. Lett. 104 (13), 138302.CrossRefGoogle ScholarPubMed
Palacci, J., Cottin-Bizonne, C., Ybert, C. & Bocquet, L. 2012 Osmotic traps for colloids and macromolecules based on logarithmic sensing in salt taxis. Soft Matt. 8 (4), 980994.CrossRefGoogle Scholar
Prieve, D. C., Anderson, J. L., Ebel, J. P. & Lowell, M. E. 1984 Motion of a particle generated by chemical gradients. Part 2. Electrolytes. J. Fluid Mech. 148, 247269.CrossRefGoogle Scholar
Prieve, D. C. & Roman, R. 1987 Diffusiophoresis of a rigid sphere through a viscous electrolyte solution. J. Chem. Soc. Faraday Trans. 83 (8), 12871306.CrossRefGoogle Scholar
Sabass, B. & Seifert, U. 2012 Dynamics and efficiency of a self-propelled, diffusiophoretic swimmer. J. Chem. Phys. 136 (6), 064508.Google ScholarPubMed
Sharifi-Mood, N., Koplik, J. & Maldarelli, C. 2013 Diffusiophoretic self-propulsion of colloids driven by a surface reaction: the sub-micron particle regime for exponential and van der Waals interactions. Phys. Fluids 25 (1), 012001.CrossRefGoogle Scholar
Shin, S., Warren, P. B. & Stone, H. A. 2018 Cleaning by surfactant gradients: particulate removal from porous materials and the significance of rinsing in laundry detergency. Phys. Rev. A 9 (3), 034012.Google Scholar
Sutherland, D. N. & Tan, C. T. 1970 Sedimentation of a porous sphere. Chem. Engng Sci. 25 (12), 19481950.CrossRefGoogle Scholar
Teubner, M. 1982 The motion of charged colloidal particles in electric fields. J. Chem. Phys. 76 (11), 55645573.CrossRefGoogle Scholar
Velegol, D., Garg, A., Guha, R., Kar, A. & Kumar, M. 2016 Origins of concentration gradients for diffusiophoresis. Soft Matt. 12 (21), 46864703.CrossRefGoogle ScholarPubMed
Yang, F., Shin, S. & Stone, H. A. 2018 Diffusiophoresis of a charged drop. J. Fluid Mech. 852, 3759.CrossRefGoogle Scholar
Yao, L. & Mori, Y. 2017 A numerical method for osmotic water flow and solute diffusion with deformable membrane boundaries in two spatial dimension. J. Comput. Phys. 350, 728746.CrossRefGoogle Scholar