Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T06:21:12.820Z Has data issue: false hasContentIssue false

Lissajous trajectories in electromagnetically driven vortices

Published online by Cambridge University Press:  21 February 2017

Aldo Figueroa*
Affiliation:
CONACYT-Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mor. 62209, México
Sergio Cuevas
Affiliation:
Instituto Energías Renovables, Universidad Nacional Autónoma de México, AP 34, Temixco, Mor. 62580, México
Eduardo Ramos
Affiliation:
Instituto Energías Renovables, Universidad Nacional Autónoma de México, AP 34, Temixco, Mor. 62580, México
*
Email address for correspondence: [email protected]

Abstract

An experimental and theoretical study of laminar vortical flows driven by oscillating electromagnetic forces that act in orthogonal directions in a shallow electrolytic fluid layer is presented. Forces are generated by the interaction of the field of a dipolar permanent magnet and two imposed alternating electric currents perpendicular to each other with independent frequencies varying in the range of 10–30 mHz. Velocity fields of the time-dependent flow are obtained using particle image velocimetry, while particle tracking allows exploration of the Lagrangian trajectories and time maps. An approximate two-dimensional analytical solution is obtained for the laminar creeping regime so that Lagrangian trajectories are integrated explicitly. These trajectories resemble Lissajous figures with the usual property that, when the ratio of the frequencies of the imposed currents is rational, closed paths are found, while non-closed paths occur when this ratio is irrational. Deviations of this regime that account for slight increase of inertial effects are explored through a quasi-two-dimensional numerical simulation. In this case, non-closed paths are found even for rational frequency ratios. This case was observed in the experiment. Lagrangian trajectories calculated numerically show a qualitative agreement with experimental particle tracking. Furthermore, numerical time maps obtained for increasing inertial effects and rational frequency ratios reveal a chaotic behaviour. Some features of the Lagrangian trajectories are validated experimentally. In particular, topological properties of the calculated and observed time maps are in qualitative agreement. In a characteristic case, a partial time map calculated numerically is compared with the section acquired from the experimental tracking of one particle.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aref, H. 1984 Stirring by chaotic advection. J. Fluid Mech. 143, 121.CrossRefGoogle Scholar
Aref, H. 2002 The development of chaotic advection. Phys. Fluids 14, 13151325.CrossRefGoogle Scholar
Aref, H., Blake, J. R., Budii, M., Cartwright, J. H. E., Clercx, H. J. H., Feudel, U., Golestanian, R., Gouillart, E., Le Guer, Y., van Heijst, G. F. et al. 2017 Frontiers of chaotic advection. Rev. Modern Phys., in press.CrossRefGoogle Scholar
Baskan, O., Speetjens, M. F. M., Metcalfe, G. & Clercx, H. J. H. 2015 Direct experimental visualization of the global Hamiltonian progression of two-dimensional Lagrangian flow topologies from integrable to chaotic state. Chaos 25, 103106.CrossRefGoogle ScholarPubMed
Cruz-Gómez, R. C., Zavala-Sansón, L. & Pinilla, M. A. 2013 Generation of isolated vortices in a rotating fluid by means of an electromagnetic method. Exp. Fluids 54 (8), 111.CrossRefGoogle Scholar
Cuevas, S., Smolentsev, S. & Abdou, M. 2006 Vorticity generation in creeping flow past a magnetic obstacle. Phys. Rev. E 70, 053601.Google Scholar
Durán-Matute, M., Kamp, L. P. J., Trieling, R. R. & van Heijst, G. J. F. 2010 Scaling of decaying axisymmetric swirl flows. J. Fluid Mech. 648, 471484.CrossRefGoogle Scholar
Figueroa, A.2010 Dynamics of vortices generated by electromagnetic forces. PhD thesis, National Autonomous University of Mexico.Google Scholar
Figueroa, A., Cuevas, S. & Ramos, E. 2011 Electromagnetically driven oscillatory shallow layer flow. Phys. Fluids 23, 013601.CrossRefGoogle Scholar
Figueroa, A., Demiaux, F., Ramos, S. & Cuevas, E. 2009 Electrically driven vortices in a weak dipolar magnetic field in a shallow electrolytic layer. J. Fluid Mech. 641, 245261.CrossRefGoogle Scholar
Figueroa, A., Meunier, P., Cuevas, S., Villermaux, E. & Ramos, E. 2014 Chaotic advection at large Péclet number: electromagnetically driven experiments, numerical simulations, and theoretical predictions. Phys. Fluids 26, 013601.CrossRefGoogle Scholar
González-Vera, A. & Zavala-Sansón, L. 2015 The evolution of a continuously forced shear flow in a closed rectangular domain. Phys. Fluids 27 (3), 034106.CrossRefGoogle Scholar
Jackson, E. A. 1991 Perspectives of Nonlinear Dynamics. vol. 2. Cambridge University Press.Google Scholar
José, J. V. & Saletan, E. J. 1998 Classical Dynamics: A Contemporary Approach. Cambridge University Press.CrossRefGoogle Scholar
Lawrence, J. D.1972 A Catalog of Special Plane Curves, pp. 160–164 and 169. Dover.Google Scholar
Lemaire, J. 1967 Hypocycloïdes et epicycloïdes. Albert Blanchard.Google Scholar
McCaig, M. 1977 Permanent Magnets in Theory and Practice. Wiley.Google Scholar
Meunier, P. & Villermaux, E. 2010 The diffusive strip method for scalar mixing in two dimensions. J. Fluid Mech. 662, 134172.CrossRefGoogle Scholar
Nolte, D. D. 2010 The tangled tale of phase space. Phys. Today 63, 3344.CrossRefGoogle Scholar
Ott, E. 1993 Chaos in Dynamical Systems. Cambridge University Press.Google Scholar
Ouellete, N. T. & Gollub, J. P. 2007 Curvature fields, topology, and the dynamics of spatiotemporal chaos. Phys. Rev. Lett. 99, 194502.Google Scholar
Ouellette, N. T. & Gollub, J. P. 2008 Dynamic topology in spatiotemporal chaos. Phys. Fluids 20, 064104.CrossRefGoogle Scholar
Pook, L. P. 2011 Understanding Pendulums: A Brief Introduction. Springer.CrossRefGoogle Scholar
Rossi, L. 2010 Mechanism to explore lamination rate. Phys. Rev. E 81, 027301.CrossRefGoogle ScholarPubMed
Rossi, L., Doorly, D. & Kustrin, D. 2012 Lamination and mixing in three fundamental flow sequences driven by electromagnetic body forces. Phys. Rev. E 86, 026313.CrossRefGoogle ScholarPubMed
Rossi, L., Doorly, D. & Kustrin, D. 2013 Lamination, stretching, and mixing in cat’s eyes flip sequences with varying periods. Phys. Fluids 25, 073604.CrossRefGoogle Scholar
Rossi, L. & Lardeau, S. 2011 Lamination and folding in electromagnetically driven flows of specified geometries. J. Turbul. 12, 131.Google Scholar
Rossi, L., Vassilicos, J. C. & Hardalupas, Y. 2006a Electromagnetically controlled multi-scale flows. J. Fluid Mech. 558, 207242.CrossRefGoogle Scholar
Rossi, L., Vassilicos, J. C. & Hardalupas, Y. 2006b Multi-scale laminar flows with turbulent-like properties. Phys. Rev. Lett. 97, 144501.CrossRefGoogle Scholar
Solomon, T., Winokur, J., O’Malley, G. & Paoletti, M. 2008 Chaotic mixing and superdiffusion in a two-dimensional array of vortices. Bull. Am. Phys. Soc. 53 (15), Abstract only.Google Scholar
Voth, G. A., Haller, G. & Gollub, J. P. 2002 Experimental measurements of stretching fields in fluid mixing. Phys. Rev. Lett. 88, 254501.CrossRefGoogle ScholarPubMed
Voth, G. A., Saint, T. C., Dobler, G. & Gollub, J. P. 2003 Mixing rates and symmetry breaking in two-dimensional chaotic flow. Phys. Fluids 15, 25602566.CrossRefGoogle Scholar
Yi, M., Qian, S. & Bau, H. H. 2002 A magnetohydrodynamic chaotic stirrer. J. Fluid Mech. 468, 153177.CrossRefGoogle Scholar