Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T16:00:16.269Z Has data issue: false hasContentIssue false

Liquid–solid impacts with compressible gas cushioning

Published online by Cambridge University Press:  22 October 2013

Peter D. Hicks*
Affiliation:
School of Engineering, Fraser Noble Building, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK
Richard Purvis
Affiliation:
School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK
*
Email address for correspondence: [email protected]

Abstract

The role played by gas compressibility in gas-cushioned liquid–solid impacts is investigated within a viscous gas and inviscid liquid regime. A full analysis of the energy conservation in the gas is conducted for the first time, which indicates that both thermal diffusion across the gas film and viscous dissipation play an important role in gas cushioning once gas compression becomes significant. Consequently existing models of gas compressibility based on either an isothermal or an adiabatic equation of state for the gas do not fully reflect the physics associated with this phenomenon. Models incorporating thermal diffusion and viscous dissipation are presented, which are appropriate for length scales consistent with droplet impacts, and for larger scale liquid–solid impacts. The evolution of the free surface is calculated alongside the corresponding pressure, temperature and density profiles. These profiles indicate that a pocket of gas can become trapped during an impact. Differences between the new model and older models based on isothermal and adiabatic equations of state are discussed, along with predictions of the size of the trapped gas pocket.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahamsen, B. C. & Faltinsen, O. M. 2011 The effect of air leakage and heat exchange on the decay of entrapped air pocket slamming oscillations. Phys. Fluids 23 (10), 102107.Google Scholar
Baldessari, F., Homsy, G. M. & Leal, L. G. 2007 Linear stability of a draining film squeezed between two approaching droplets. J. Colloid Interface Sci. 307 (1), 188202.CrossRefGoogle ScholarPubMed
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Bhardwaj, R. & Attinger, D. 2008 Non-isothermal wetting during impact of millimetre-size water drop on a flat substrate: numerical investigation and comparison with high-speed visualization experiments. Intl J. Heat Fluid Flow 29 (5), 14221435.Google Scholar
Bhardwaj, R., Longtin, J. P. & Attinger, D. 2007 A numerical investigation on the influence of liquid properties and interfacial heat transfer during microdroplet deposition onto a glass substrate. Intl J. Heat Mass Transfer 50 (15–16), 29122923.CrossRefGoogle Scholar
Brenner, M. P., Hilgenfeldt, S. & Lohse, D. 2002 Single-bubble sonoluminescence. Rev. Mod. Phys. 74 (2), 425484.Google Scholar
Chuang, S.-L. 1966 Experiments on flat-bottom slamming. J. Ship Res. 10, 1017.CrossRefGoogle Scholar
Colagrossi, A., Lugni, C., Greco, M. & Faltinsen, O. M. 2004 Experimental and numerical investigation of 2d sloshing with slamming. In Proceedings of 19th Workshop on Water Waves and Floating Bodies, Cortona, Italy (ed. M. Landrini, E. F. Campana & A. Iafrati), http://www.iwwwfb.org/Workshops/19.htm.Google Scholar
van Dam, D. B. & Le Clerc, C. 2004 Experimental study of the impact of an ink-jet printed droplet on a solid substrate. Phys. Fluids 16 (9), 34033414.Google Scholar
Dell’Aversana, P., Tontodonato, V. & Carotenuto, L. 1997 Suppression of coalescence and of wetting: the shape of the interstitial film. Phys. Fluids 9 (9), 24752485.CrossRefGoogle Scholar
Driscoll, M. M. & Nagel, S. R. 2011 Ultrafast interference imaging of air in splashing dynamics. Phys. Rev. Lett. 107 (15), 154502.Google Scholar
Gent, R. W., Dart, N. P. & Cansdale, J. T. 2000 Aircraft icing. Phil. Trans. R. Soc. Lond. A 359, 28732911.Google Scholar
Hicks, P. D., Ermanyuk, E. V., Gavrilov, N. V. & Purvis, R. 2012 Air trapping at impact of a rigid sphere onto a liquid. J. Fluid Mech. 695, 310320.Google Scholar
Hicks, P. D. & Purvis, R. 2010 Air cushioning and bubble entrapment in three-dimensional droplet impacts. J. Fluid Mech. 649, 135163.CrossRefGoogle Scholar
Hicks, P. D. & Purvis, R. 2011 Air cushioning in droplet impacts with liquid layers and other droplets. Phys. Fluids 23 (6), 062104.Google Scholar
Hicks, P. D. & Purvis, R. 2012 Compressible air cushioning in liquid–solid impacts. In Proceedings of 2nd International Conference on Violent Flows, Nantes,  25–27 September. Editions Publibook.Google Scholar
Howell, P. D. 2001 Fluid-mechanical modelling of the scroll compressor. In Mathematical Modelling: Case Studies from Industry (ed. Cumberbatch, E. & Fitt, A.), chap. 1, pp. 2245. Cambridge University Press.Google Scholar
Kaur, S. & Leal, L. G. 2009 Three-dimensional stability of a thin film between two approaching drops. Phys. Fluids 21 (7), 072101.Google Scholar
Lesser, M. B. & Field, J. E. 1983 The impact of compressible liquids. Annu. Rev. Fluid Mech. 15, 97122.CrossRefGoogle Scholar
Liu, Y., Tan, P. & Xu, L. 2013 Compressible air entrapment in high-speed drop impacts on solid surfaces. J. Fluid Mech. 716, R9.CrossRefGoogle Scholar
Mandre, S., Mani, M. & Brenner, M. P. 2009 Precursors to splashing of liquid droplets on a solid surface. Phys. Rev. Lett. 102 (13), 134502.Google Scholar
Mani, M., Mandre, S. & Brenner, M. P. 2010 Events before droplet splashing on a solid surface. J. Fluid Mech. 647, 163185.Google Scholar
Marston, J. O., Vakarelski, I. U. & Thoroddsen, S. T. 2011 Bubble entrapment during sphere impact onto quiescent liquid surfaces. J. Fluid Mech. 680, 660670.CrossRefGoogle Scholar
Oliver, J. M. 2002 Water entry and related problems. PhD thesis, University of Oxford, Oxford, UK.Google Scholar
Purvis, R. & Smith, F. T. 2004 Air–water interactions near droplet impact. Eur. J. Appl. Maths 15, 853871.Google Scholar
Rognebakke, O. F. & Faltinsen, O. M. 2005 Sloshing induced impact with air cavity in rectangular tank with a high filling ratio. In Proceedings of the 20th International Workshop on Water Waves and Floating Bodies (ed. J. Grue), http://www.iwwwfb.org/Workshops/20.htm.Google Scholar
Rohsenow, W. M., Hartnett, J. P. & Cho, Y. I. (Eds) 1998 Handbook of Heat Transfer, third edn. McGraw-Hill.Google Scholar
Smith, F. T., Li, L. & Wu, G. X. 2003 Air cushioning with a lubrication/inviscid balance. J. Fluid Mech. 482, 291318.Google Scholar
Stewartson, K. 1964 The Theory of Laminar Boundary Layers in Compressible Fluids. Clarendon.CrossRefGoogle Scholar
Takagi, K. & Dobashi, J. 2003 Influence of trapped air on the slamming of a ship. J. Ship Res. 47 (3), 187193.CrossRefGoogle Scholar
Thoroddsen, S. T., Etoh, T. G. & Takehara, K. 2003 Air entrapment under an impacting drop. J. Fluid Mech. 478, 125134.CrossRefGoogle Scholar
Thoroddsen, S. T., Etoh, T. G., Takehara, K., Ootsuka, N. & Hatsuki, Y. 2005 The air bubble entrapped under a drop impacting on a solid surface. J. Fluid Mech. 545, 203212.Google Scholar
van der Veen, R. C. A., Tran, T., Lohse, D. & Sun, C. 2012 Direct measurements of air layer profiles under impacting droplets using high-speed colour interferometry. Phys. Rev. E 85, 026315.Google Scholar
Wilson, S. K. 1991 A mathematical model for the initial stages of fluid impact in the presence of a cushioning fluid layer. J. Engng Maths 25 (3), 265285.Google Scholar
Xu, L., Zhang, W. W. & Nagel, S. R. 2005 Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94, 184505.Google Scholar