Published online by Cambridge University Press: 26 April 2006
Liquid-metal magnetohydrodynamic flow in a system of electrically coupled U-bends in a strong uniform magnetic field is studied. The ducts composing the bends are electrically conducting and have rectangular cross-sections. It has been anticipated that very strong global electric currents are induced in the system, which modify the flow pattern and produce a very high pressure drop compared to the flow in a single U-bend. A detailed asymptotic analysis of flow for high values of the Harmann number (in fusion blanket applications of the order of 103−104) shows that circulation of global currents results in several types of peculiar flow patterns. In ducts parallel to the magnetic field a combination of helical and recirculatory flow types may be present and vary from one bend to another. The magnitude of the recirculatory motion may become very high depending on the flow-rate distribution between the bends in the system. The recirculatory flow may account for about 50% of the flow in all bends. In addition there are equal and opposite jets at the walls parallel to the magnetic field, which are common to any two bends. The pressure drop due to three-dimensional effects linearly increases with the number of bends in a system and may significantly affect the total pressure drop. To suppress this and some other unwelcome tendencies either the ducts perpendicular to the magnetic field should be electrically separated, or the flow direction in the neighbouring ducts should be made opposite, so that leakage currents cancel each other.