Article contents
Linearized analysis of the three-dimensional compressible flow through a rotating annular blade row
Published online by Cambridge University Press: 20 April 2006
Abstract
Linearized solutions for the flow field of a rotating blade row in an infinitely long annular duct are reviewed. An isolated rotor is assumed to operate in a uniform axial flow so that the disturbance field is steady in a blade fixed co-ordinate system. Both three-dimensional and compressibility effects are included, but attention is confined to subsonic flows. Previously published source-flow solutions omitted a term which affected the thickness part of the rotor flow field constructed from them. Corrected source and rotor-thickness solutions are given, and then the source or monopole solution is used to form a pressure dipole solution. The rotor-loading contribution to the flow field is found by superposition of the revised dipole solutions. The present version of the dipole representation of the steady-loading field is shown to be equivalent to an existing vortex representation, but different from an existing dipole representation. The behaviour of the blade-surface pressure and velocity distributions is described for both the thickness and loading cases. Sample numerical evaluations of the surface quantities are presented.
- Type
- Research Article
- Information
- Copyright
- © 1981 Cambridge University Press
References
- 9
- Cited by