Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-20T01:34:31.943Z Has data issue: false hasContentIssue false

Linear stability of modulated circular Couette flow

Published online by Cambridge University Press:  29 March 2006

P. J. Riley
Affiliation:
Department of Chemical Engineering, University of Massachusetts, Amherst
R. L. Laurence
Affiliation:
Department of Chemical Engineering, University of Massachusetts, Amherst

Abstract

The linear stability of modulated circular Couette flow to axisymmetric disturbances is examined in the narrow-gap limit. The outer cylinder is assumed stationary, while the inner is modulated both with and without a mean rotation. The equations governing the disturbance motion are solved by a Galerkin expansion with time-dependent coefficients, and the stability of the motion determined by Floquet theory. Modulation is found, in general, to destabilize the flow due to steady rotation, although weak stabilization is found for some modulation amplitudes at intermediate frequencies.

Type
Research Article
Copyright
© 1976 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford: Clarendon Press.
Coddington, E. A. & Levinson, N. 1955 Theory of Ordinary Differential Equations. McGraw-Hill.
Conrad, P. W. & Criminale, W. O. 1965 Z. angew. Math. Phys. 16, 569.
Davis, S. H. 1970 J. Fluid Mech. 45, 33.
Davis, S. H. 1976 Ann. Rev. Fluid Mech. 8, 57.
Davis, S. H. & VON KERCZEK, C. 1973 Arch. Rat. Anal. 52, 112.
Donnelly, R. J. 1963 Phys. Rev. Lett. 10, 282.
Donnelly, R. J. 1964 Proc. Roy. Soc. A, 281, 130.
Francis, J. G. F. 1961 Computer J. 4, 265810, 332810.
Hall, P. 1975 J. Fluid Mech. 67, 29.
Hall, P. 1976 J. Fluid Mech. (to appear).
Homsy, G. M. 1974 J. Fluid Mech. 62, 387.
Iooss, G. 1972 Comptes Rendus, A 275, 935.
Jacoby, S. L. S., Kowalik, J. S. & Pizzo, J. T. 1972 Iterative Methods for Non-linear Optimization Problems. Prentice-Hall.
Joseph, D. D. 1972 Remarks about bifurcation and stability of quasi-periodic solutions which bifurcate from periodic solutions of the Navier—Stokes equations. In Non-Linear Problems in the Physical Sciences and Biology. Lecture Notes in Mathematics, no. 322, p. 130. Springer.
Joseph, D. D. & Hung, W. 1971 Arch. Rat. Mech. Anal. 44, 1.
Kerczek, C. Von & Davis, S. H. 1974 J. Fluid Mech. 62, 753.
Kruger, E. R., Gross, A. & Diprima, R. C. 1966 J. Fluid Mech. 24, 521.
Lapidus, L. & Seinfeld, J. H. 1971 Numerical Solutions of Ordinary Differential Equations. Academic.
Meister, B. 1963 Arch. Rat. Mech. Anal. 14, 81.
Meister, B. & MÜNZER, W. 1966 Z. angew. Math. Phys. 17, 537.
Mikhlin, S. G. 1971 The Numerical Performance of Variational Methods. Wolters Noordhoff.
Morse, P. M. & Feshbach, H. 1953 Methods of Theoretical Physics, vol. I. McGraw-Hill.
Ralston, A. 1965 A First Course in Numerical Analysis. McGraw-Hill.
Riley, P. J. 1975 Ph.D. thesis, Dept. Chemical Engng, University of Massachusetts.
Riley, P. J. & Laurence, R. L. 1976 J. Fluid Mech. (to appear).
Rosenblat, S. 1968 J. Fluid Mech. 33, 321.
Rosenblat, S. & Herbert, D. M. 1970 J. Fluid Mech. 43, 385.
Rosenblat, S. & Tanaka, G. A. 1971 Phys. Fluids, 14 1319.
Ruulle, D. & Takens, F. 1971 Comm. Math. Phys. 20, 167.
Serrin, J. 1959 Arch. Rat. Mech. Anal. 1, 1.
Serrin, J. 1960 Arch. Rat. Mech. Anal. 3, 120.
Taylor, G. I. 1923 Phil. Trans. A, 223, 289.
Thompson, R. 1968 Ph.D. thesis, Dept. of Meteorology, M.I.T.
Wilkinson, J. H. 1965 Computer J. 8, 77.
Yih, C. S. & Li, C. H. 1972 J. Fluid Mech. 54, 143.
Yudovitch, V. 1970 Sov. Math. Dokl. 11, 1473.