Hostname: page-component-f554764f5-rvxtl Total loading time: 0 Render date: 2025-04-20T05:42:35.798Z Has data issue: false hasContentIssue false

Linear stability and spectral modal decomposition of three-dimensional turbulent wake flow of a generic high-speed train

Published online by Cambridge University Press:  28 November 2024

Xiao-Bai Li
Affiliation:
Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic & Transportation Engineering, Central South University, 410075 Changsha, PR China Laboratory for Flow Instability and Dynamics, Technische Universität Berlin, 10623 Berlin, Germany
Simon Demange
Affiliation:
Laboratory for Flow Instability and Dynamics, Technische Universität Berlin, 10623 Berlin, Germany
Guang Chen
Affiliation:
Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic & Transportation Engineering, Central South University, 410075 Changsha, PR China
Jia-Bin Wang
Affiliation:
Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic & Transportation Engineering, Central South University, 410075 Changsha, PR China
Xi-Feng Liang
Affiliation:
Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic & Transportation Engineering, Central South University, 410075 Changsha, PR China
Oliver T. Schmidt*
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA
Kilian Oberleithner*
Affiliation:
Laboratory for Flow Instability and Dynamics, Technische Universität Berlin, 10623 Berlin, Germany
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

This work investigates the spatio-temporal evolution of coherent structures in the wake of a generic high-speed train, based on a three-dimensional database from large eddy simulation. Spectral proper orthogonal decomposition (SPOD) is used to extract energy spectra and energy ranked empirical modes for both symmetric and antisymmetric components of the fluctuating flow field. The spectrum of the symmetric component shows overall higher energy and more pronounced low-rank behaviour compared with the antisymmetric one. The most dominant symmetric mode features periodic vortex shedding in the near wake, and wave-like structures with constant streamwise wavenumber in the far wake. The mode bispectrum further reveals the dominant role of self-interaction of the symmetric component, leading to first harmonic and subharmonic triads of the fundamental frequency, with remarkable deformation of the mean field. Then, the stability of the three-dimensional wake flow is analysed based on two-dimensional local linear stability analysis combined with a non-parallelism approximation approach. Temporal stability analysis is first performed for both the near-wake and the far-wake regions, showing a more unstable condition in the near-wake region. The absolute frequency of the near-wake eigenmode is determined based on spatio-temporal analysis, then tracked along the streamwise direction to find out the global mode growth rate and frequency, which indicate a marginally stable global mode oscillating at a frequency very close to the most dominant SPOD mode. The global mode wavemaker is then located, and the structural sensitivity is calculated based on the direct and adjoint modes derived from a local spatial analysis, with the maximum value localized within the recirculation region close to the train tail. Finally, the global mode shape is computed by tracking the most spatially unstable eigenmode in the far wake, and the alignment with the SPOD mode is computed as a function of streamwise location. By combining data-driven and theoretical approaches, the mechanisms of coherent structures in complex wake flows are well identified and isolated.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abreu, L.I., Cavalieri, A.V.G., Schlatter, P., Vinuesa, R. & Henningson, D.S. 2020 Spectral proper orthogonal decomposition and resolvent analysis of near-wall coherent structures in turbulent pipe flows. J. Fluid Mech. 900, A11.CrossRefGoogle Scholar
Abreu, L.I., Tanarro, A., Cavalieri, A.V.G., Schlatter, P., Vinuesa, R., Hanifi, A. & Henningson, D.S. 2021 Spanwise-coherent hydrodynamic waves around flat plates and airfoils. J. Fluid Mech. 927, A1.CrossRefGoogle Scholar
Ahmed, S.R., Ramm, G. & Faltin, G. 1984 Some salient features of the time-averaged ground vehicle wake. SAE Trans., 473503.Google Scholar
Barkley, D. 2006 Linear analysis of the cylinder wake mean flow. Europhys. Lett. 75 (5), 750.CrossRefGoogle Scholar
Bell, J.R., Burton, D., Thompson, M.C., Herbst, A.H. & Sheridan, J. 2016 Dynamics of trailing vortices in the wake of a generic high-speed train. J. Fluids Struct. 65, 238256.CrossRefGoogle Scholar
Blanco, D.C.P., Martini, E., Sasaki, K. & Cavalieri, A.V.G. 2022 Improved convergence of the spectral proper orthogonal decomposition through time shifting. J. Fluid Mech. 950, A9.CrossRefGoogle Scholar
Bridges, T.J. & Morris, P.J. 1984 Differential eigenvalue problems in which the parameter appears nonlinearly. J. Comput. Phys. 55 (3), 437460.CrossRefGoogle Scholar
Briggs, R.J. 1964 Electron-stream interaction with plasmas. Electron-stream interaction with plasmas.CrossRefGoogle Scholar
Casel, M., Oberleithner, K., Zhang, F.-C., Zirwes, T., Bockhorn, H., Trimis, D. & Kaiser, T.L. 2022 Resolvent-based modelling of coherent structures in a turbulent jet flame using a passive flame approach. Combust. Flame 236, 111695.CrossRefGoogle Scholar
Chandler, G.J., Juniper, M.P., Nichols, J.W. & Schmid, P.J. 2012 Adjoint algorithms for the Navier–Stokes equations in the low mach number limit. J. Comput. Phys. 231 (4), 19001916.CrossRefGoogle Scholar
Chomaz, J.-M. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37, 357392.CrossRefGoogle Scholar
Chomaz, J.-M., Huerre, P. & Redekopp, L.G. 1991 A frequency selection criterion in spatially developing flows. Stud. Appl. Maths 84 (2), 119144.CrossRefGoogle Scholar
Chong, M.S., Perry, A.E. & Cantwell, B.J. 1990 A general classification of three-dimensional flow fields. Phys. Fluids 2 (5), 765777.CrossRefGoogle Scholar
Colonius, T., Rowley, C.W., Freund, J.B. & Murray, R.M. 2002 On the choice of norm for modeling compressible flow dynamics at reduced-order using the pod. In Proceedings of the 41st IEEE Conference on Decision and Control, 2002, vol. 3, pp. 3273–3278.Google Scholar
Cooper, A.J. & Crighton, D.G. 2000 Global modes and superdirective acoustic radiation in low-speed axisymmetric jets. Eur. J. Mech. (B/Fluids) 19 (5), 559574.CrossRefGoogle Scholar
Crow, S.C. 1970 Stability theory for a pair of trailing vortices. AIAA J. 8 (12), 21722179.CrossRefGoogle Scholar
Demange, S., Chazot, O. & Pinna, F. 2020 Local analysis of absolute instability in plasma jets. J. Fluid Mech. 903, A51.CrossRefGoogle Scholar
Demange, S., Qadri, U.A., Juniper, M.P. & Pinna, F. 2022 Global modes of viscous heated jets with real gas effects. J. Fluid Mech. 936, A7.CrossRefGoogle Scholar
Evstafyeva, O., Morgans, A.S. & Dalla Longa, L. 2017 Simulation and feedback control of the Ahmed body flow exhibiting symmetry breaking behaviour. J. Fluid Mech. 817, R2.CrossRefGoogle Scholar
Giannetti, F. & Luchini, P. 2007 Structural sensitivity of the first instability of the cylinder wake. J. Fluid Mech. 581, 167197.CrossRefGoogle Scholar
Gómez, F., Gómez, R. & Theofilis, V. 2014 On three-dimensional global linear instability analysis of flows with standard aerodynamics codes. Aerosp. Sci. Technol. 32 (1), 223234.CrossRefGoogle Scholar
Grandemange, M., Gohlke, M. & Cadot, O. 2013 Turbulent wake past a three-dimensional blunt body. Part 1. Global modes and bi-stability. J. Fluid Mech. 722, 5184.CrossRefGoogle Scholar
Grandemange, M., Gohlke, M. & Cadot, O. 2014 Turbulent wake past a three-dimensional blunt body. Part 2. Experimental sensitivity analysis. J. Fluid Mech. 752, 439461.CrossRefGoogle Scholar
Hack, M.J.P. & Schmidt, O.T. 2021 Extreme events in wall turbulence. J. Fluid Mech. 907, A9.CrossRefGoogle Scholar
Haffner, Y., Borée, J., Spohn, A. & Castelain, T. 2020 Mechanics of bluff body drag reduction during transient near-wake reversals. J. Fluid Mech. 894, A14.CrossRefGoogle Scholar
He, X., Fang, Z., Rigas, G. & Vahdati, M. 2021 b Spectral proper orthogonal decomposition of compressor tip leakage flow. Phys. Fluids 33 (10), 105105.CrossRefGoogle Scholar
He, K., Minelli, G., Wang, J.-B., Dong, T.-Y., Gao, G.-J. & Krajnović, S. 2021 a Numerical investigation of the wake bi-stability behind a notchback Ahmed body. J. Fluid Mech. 926, A36.CrossRefGoogle Scholar
Huerre, P. & Monkewitz, P.A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22 (1), 473537.CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Juniper, M.P., Hanifi, A. & Theofilis, V. 2014 Modal stability theorylecture notes from the FLOW-NORDITA summer school on advanced instability methods for complex flows, Stockholm, Sweden, 2013. Appl. Mech. Rev. 66 (2), 024804.Google Scholar
Juniper, M.P. & Pier, B. 2015 The structural sensitivity of open shear flows calculated with a local stability analysis. Eur. J. Mech. (B/Fluids) 49, 426437.CrossRefGoogle Scholar
Juniper, M.P., Tammisola, O. & Lundell, F. 2011 The local and global stability of confined planar wakes at intermediate Reynolds number. J. Fluid Mech. 686, 218238.CrossRefGoogle Scholar
Kaiser, T.L., Poinsot, T. & Oberleithner, K. 2018 Stability and sensitivity analysis of hydrodynamic instabilities in industrial swirled injection systems. Trans. ASME J. Engng Gas Turbines Power 140 (5), 051506.CrossRefGoogle Scholar
Khorrami, M.R. 1991 On the viscous modes of instability of a trailing line vortex. J. Fluid Mech. 225, 197212.CrossRefGoogle Scholar
Khorrami, M.R., Malik, M.R. & Ash, R.L. 1989 Application of spectral collocation techniques to the stability of swirling flows. J. Comput. Phys. 81 (1), 206229.CrossRefGoogle Scholar
Kuhn, P., Soria, J. & Oberleithner, K. 2021 Linear modelling of self-similar jet turbulence. J. Fluid Mech. 919, A7.CrossRefGoogle Scholar
Kurz, H.B.E. & Kloker, M.J. 2016 Mechanisms of flow tripping by discrete roughness elements in a swept-wing boundary layer. J. Fluid Mech. 796, 158194.CrossRefGoogle Scholar
Li, X.-B., Chen, G., Liang, X.-F., Liu, D.-R. & Xiong, X.-H. 2021 a Research on spectral estimation parameters for application of spectral proper orthogonal decomposition in train wake flows. Phys. Fluids 33 (12), 125103.CrossRefGoogle Scholar
Li, Y.-Q., Cui, W.-S., Jia, Q., Li, Q.-L., Yang, Z.-G., Morzyński, M. & Noack, B.R. 2022 Explorative gradient method for active drag reduction of the fluidic pinball and slanted Ahmed body. J. Fluid Mech. 932, A7.CrossRefGoogle Scholar
Li, X.-B., Liang, X.-F., Wang, Z., Xiong, X.-H., Chen, G., Yu, Y.-Z. & Chen, C.-M. 2021 b On the correlation between aerodynamic drag and wake flow for a generic high-speed train. J. Wind Engng Ind. Aerodyn. 215, 104698.CrossRefGoogle Scholar
Lienhart, H., Stoots, C. & Becker, S. 2002 Flow and turbulence structures in the wake of a simplified car model (Ahmed modell). In New Results in Numerical and Experimental Fluid Mechanics III: Contributions to the 12th STAB/DGLR Symposium Stuttgart, Germany 2000, pp. 323–330. Springer.CrossRefGoogle Scholar
Liu, C.-Q., Wang, Y.-Q., Yang, Y. & Duan, Z.-W. 2016 New omega vortex identification method. Sci. China 59 (8), 684711.Google Scholar
Liu, K., Zhang, B.-F., Zhang, Y.-C. & Zhou, Y. 2021 Flow structure around a low-drag Ahmed body. J. Fluid Mech. 913, A21.CrossRefGoogle Scholar
Loiseau, J.-C., Robinet, J.-C., Cherubini, S. & Leriche, E. 2014 Investigation of the roughness-induced transition: global stability analyses and direct numerical simulations. J. Fluid Mech. 760, 175211.CrossRefGoogle Scholar
Lumley, J.L. 1967 The structure of inhomogeneous turbulent flows. Atmos. Turbul. Radio Wave Propag., 166178.Google Scholar
Lumley, J.L. 1970 Stochastic Tools in Turbulence. Academic Press.Google Scholar
Ma, R. & Mahesh, K. 2022 Global stability analysis and direct numerical simulation of boundary layers with an isolated roughness element. J. Fluid Mech. 949, A12.CrossRefGoogle Scholar
Marquet, O., Lombardi, M., Chomaz, J.-M., Sipp, D. & Jacquin, L. 2009 Direct and adjoint global modes of a recirculation bubble: lift-up and convective non-normalities. J. Fluid Mech. 622, 121.CrossRefGoogle Scholar
Monkewitz, P.A., Huerre, P. & Chomaz, J.-M. 1993 Global linear stability analysis of weakly non-parallel shear flows. J. Fluid Mech. 251, 120.CrossRefGoogle Scholar
Müller, J.S., Lückoff, F., Kaiser, T.L. & Oberleithner, K. 2022 On the relevance of the runner crown for flow instabilities in a francis turbine. IOP Conf. Ser.: Earth Environ. Sci. 1079, 012053.CrossRefGoogle Scholar
Müller, J.S., Lückoff, F., Paredes, P., Theofilis, V. & Oberleithner, K. 2020 Receptivity of the turbulent precessing vortex core: synchronization experiments and global adjoint linear stability analysis. J. Fluid Mech. 888, A3.CrossRefGoogle Scholar
Nekkanti, A., Maia, I., Jordan, P., Heidt, L., Colonius, T. & Schmidt, O.T. 2022 Triadic nonlinear interactions and acoustics of forced versus unforced turbulent jets. In Twelveth International Symposium on Turbulence and Shear Flow Phenomena (TSFP12), pp. 19–22.Google Scholar
Nekkanti, A., Nidhan, S., Schmidt, O.T. & Sarkar, S. 2023 Large-scale streaks in a turbulent bluff body wake. J. Fluid Mech. 974, A47.CrossRefGoogle Scholar
Nekkanti, A. & Schmidt, O.T. 2021 Frequency–time analysis, low-rank reconstruction and denoising of turbulent flows using SPOD. J. Fluid Mech. 926, A26.CrossRefGoogle Scholar
Nicoud, F. & Ducros, F. 1999 Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62 (3), 183200.CrossRefGoogle Scholar
Nidhan, S., Schmidt, O.T. & Sarkar, S. 2022 Analysis of coherence in turbulent stratified wakes using spectral proper orthogonal decomposition. J. Fluid Mech. 934, A12.CrossRefGoogle Scholar
Noack, B.R., Afanasiev, K., Morzyński, M., Tadmor, G. & Thiele, F. 2003 A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335363.CrossRefGoogle Scholar
Oberleithner, K., Rukes, L. & Soria, J. 2014 Mean flow stability analysis of oscillating jet experiments. J. Fluid Mech. 757, 132.CrossRefGoogle Scholar
Oberleithner, K., Sieber, M., Nayeri, C.N., Paschereit, C.O., Petz, C., Hege, H.-C., Noack, B.R. & Wygnanski, I. 2011 Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J. Fluid Mech. 679, 383414.CrossRefGoogle Scholar
Paredes, P. 2014 Advances in global instability computations: from incompressible to hypersonic flow. PhD thesis, Universidad Politécnica de Madrid.Google Scholar
Paredes, P., Hermanns, M., Le Clainche, S. & Theofilis, V. 2013 Order $10^4$ speedup in global linear instability analysis using matrix formation. Comput. Meth. Appl. Mech. Engng 253, 287304.CrossRefGoogle Scholar
Parras, L. & Fernandez-Feria, R. 2007 Spatial stability and the onset of absolute instability of Batchelor's vortex for high swirl numbers. J. Fluid Mech. 583, 2743.CrossRefGoogle Scholar
Pier, B. 2002 On the frequency selection of finite-amplitude vortex shedding in the cylinder wake. J. Fluid Mech. 458, 407417.CrossRefGoogle Scholar
Pier, B. 2008 Local and global instabilities in the wake of a sphere. J. Fluid Mech. 603, 3961.CrossRefGoogle Scholar
Puckert, D.K. & Rist, U. 2018 Experiments on critical Reynolds number and global instability in roughness-induced laminar–turbulent transition. J. Fluid Mech. 844, 878904.CrossRefGoogle Scholar
Qadri, U.A., Mistry, D. & Juniper, M.P. 2013 Structural sensitivity of spiral vortex breakdown. J. Fluid Mech. 720, 558581.CrossRefGoogle Scholar
Rees, S.J. 2010 Hydrodynamic instability of confined jets & wakes & implications for gas turbine fuel injectors. PhD thesis, University of Cambridge.Google Scholar
Rees, S.J. & Juniper, M.P. 2010 The effect of confinement on the stability of viscous planar jets and wakes. J. Fluid Mech. 656, 309336.CrossRefGoogle Scholar
Regan, M.A. & Mahesh, K. 2017 Global linear stability analysis of jets in cross-flow. J. Fluid Mech. 828, 812836.CrossRefGoogle Scholar
Reynolds, W.C. & Hussain, A. 1972 The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54 (2), 263288.CrossRefGoogle Scholar
Rigas, G., Morgans, A.S., Brackston, R.D. & Morrison, J.F. 2015 Diffusive dynamics and stochastic models of turbulent axisymmetric wakes. J. Fluid Mech. 778, R-21R2-10.CrossRefGoogle Scholar
Rowley, C.W. 2005 Model reduction for fluids, using balanced proper orthogonal decomposition. Intl J. Bifurcation Chaos 15 (03), 9971013.CrossRefGoogle Scholar
Rowley, C.W. & Dawson, S.T.M. 2017 Model reduction for flow analysis and control. Annu. Rev. Fluid Mech. 49 (1), 387417.CrossRefGoogle Scholar
Rukes, L., Sieber, M., Paschereit, C.O. & Oberleithner, K. 2016 The impact of heating the breakdown bubble on the global mode of a swirling jet: experiments and linear stability analysis. Phys. Fluids 28 (10), 104102.CrossRefGoogle Scholar
Schetz, J.A. 2001 Aerodynamics of high-speed trains. Annu. Rev. Fluid Mech. 33 (1), 371414.CrossRefGoogle Scholar
Schmid, P.J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.CrossRefGoogle Scholar
Schmid, P.J. & Henningson, D.S. 2000 Stability and Transition in Shear Flows, vol. 142. Springer Science & Business Media.Google Scholar
Schmidt, O.T. 2020 Bispectral mode decomposition of nonlinear flows. Nonlinear Dyn. 102 (4), 24792501.CrossRefGoogle Scholar
Schmidt, O.T 2022 Spectral proper orthogonal decomposition using multitaper estimates. Theor. Comput. Fluid Dyn. 36 (5), 741754.CrossRefGoogle Scholar
Schmidt, O.T. & Colonius, T. 2020 Guide to spectral proper orthogonal decomposition. AIAA J. 58 (3), 10231033.CrossRefGoogle Scholar
Schmidt, S. & Oberleithner, K. 2023 Global modes of variable-viscosity two-phase swirling flows and their triadic resonance. J. Fluid Mech. 955, A24.CrossRefGoogle Scholar
Schmidt, O.T. & Towne, A. 2019 An efficient streaming algorithm for spectral proper orthogonal decomposition. Comput. Phys. Commun. 237, 98109.CrossRefGoogle Scholar
Schmidt, O.T., Towne, A., Rigas, G., Colonius, T. & Brès, G.A. 2018 Spectral analysis of jet turbulence. J. Fluid Mech. 855, 953982.CrossRefGoogle Scholar
Sieber, M., Paschereit, C.O. & Oberleithner, K. 2021 Stochastic modelling of a noise-driven global instability in a turbulent swirling jet. J. Fluid Mech. 916, A7.CrossRefGoogle Scholar
Sipp, D. & Lebedev, A. 2007 Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J. Fluid Mech. 593, 333358.CrossRefGoogle Scholar
Stewart, G.W. 2002 A Krylov–Schur algorithm for large eigenproblems. SIAM J. Matrix Anal. Appl. 23 (3), 601614.CrossRefGoogle Scholar
Taira, K., Brunton, S.L., Dawson, S.T.M., Rowley, C.W., Colonius, T., McKeon, B.J., Schmidt, O.T., Gordeyev, S., Theofilis, V. & Ukeiley, L.S. 2017 Modal analysis of fluid flows: an overview. AIAA J. 55 (12), 40134041.CrossRefGoogle Scholar
Tammisola, O. & Juniper, M.P. 2016 Coherent structures in a swirl injector at $Re= 4800$ by nonlinear simulations and linear global modes. J. Fluid Mech. 792, 620657.CrossRefGoogle Scholar
Tang, G.-Q., Cheng, L., Tong, F.-F., Lu, L. & Zhao, M. 2017 Modes of synchronisation in the wake of a streamwise oscillatory cylinder. J. Fluid Mech. 832, 146169.CrossRefGoogle Scholar
Theofilis, V. 2003 Advances in global linear instability analysis of nonparallel and three-dimensional flows. Prog. Aerosp. Sci. 39 (4), 249315.CrossRefGoogle Scholar
Theofilis, V. 2011 Global linear instability. Annu. Rev. Fluid Mech. 43, 319352.CrossRefGoogle Scholar
Theofilis, V., Duck, P. & Owen, J. 2004 Viscous linear stability analysis of rectangular duct and cavity flows. J. Fluid Mech. 505, 249286.CrossRefGoogle Scholar
Towne, A., Schmidt, O.T. & Colonius, T. 2018 Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821867.CrossRefGoogle Scholar
Trefethen, L.N. 2000 Spectral methods in MATLAB. SIAM.CrossRefGoogle Scholar
Wang, R.-Q., He, X. & Yan, X. 2022 b Spectral proper orthogonal decomposition analysis of trailing edge cutback film cooling flow. Phys. Fluids 34 (10), 105106.Google Scholar
Wang, C.-H., Lesshafft, L. & Oberleithner, K. 2022 a Global linear stability analysis of a flame anchored to a cylinder. J. Fluid Mech. 951, A27.CrossRefGoogle Scholar
Wang, J.-B., Minelli, G., Cafiero, G., Iuso, G., He, K., Basara, B., Gao, G.-J. & Krajnović, S. 2023 Validation of pans and effects of ground and wheel motion on the aerodynamic behaviours of a square-back van. J. Fluid Mech. 958, A47.CrossRefGoogle Scholar
Ypma, T.J. 1995 Historical development of the Newton–Raphson method. SIAM Rev. 37 (4), 531551.CrossRefGoogle Scholar
Zampogna, G.A. & Boujo, E. 2023 From thin plates to Ahmed bodies: linear and weakly nonlinear stability of rectangular prisms. J. Fluid Mech. 966, A19.CrossRefGoogle Scholar
Zhang, B.-F., Liu, K., Zhou, Y., To, S. & Tu, J.-Y. 2018 Active drag reduction of a high-drag Ahmed body based on steady blowing. J. Fluid Mech. 856, 351396.CrossRefGoogle Scholar
Zhang, B.-F., Zhou, Y. & To, S. 2015 Unsteady flow structures around a high-drag Ahmed body. J. Fluid Mech. 777, 291326.CrossRefGoogle Scholar
Supplementary material: File

Li et al. supplementary movie 1

Spatial distribution of the leading symmetric SPOD mode at ω=1.718
Download Li et al. supplementary movie 1(File)
File 6 MB
Supplementary material: File

Li et al. supplementary movie 2

Spatial distribution of the leading symmetric SPOD mode at ω=3.437
Download Li et al. supplementary movie 2(File)
File 6.1 MB
Supplementary material: File

Li et al. supplementary movie 3

Spatial distribution of the leading symmetric SPOD mode at ω=6.874
Download Li et al. supplementary movie 3(File)
File 6.1 MB