Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T11:28:20.104Z Has data issue: false hasContentIssue false

Linear stability and energetics of rotating radial horizontal convection

Published online by Cambridge University Press:  13 April 2016

Gregory J. Sheard*
Affiliation:
The Sheard Lab, Department of Mechanical and Aerospace Engineering, Monash University, VIC 3800, Australia
Wisam K. Hussam
Affiliation:
The Sheard Lab, Department of Mechanical and Aerospace Engineering, Monash University, VIC 3800, Australia
Tzekih Tsai
Affiliation:
The Sheard Lab, Department of Mechanical and Aerospace Engineering, Monash University, VIC 3800, Australia
*
Email address for correspondence: [email protected]

Abstract

The effect of rotation on horizontal convection in a cylindrical enclosure is investigated numerically. The thermal forcing is applied radially on the bottom boundary from the coincident axes of rotation and geometric symmetry of the enclosure. First, a spectral element method is used to obtain axisymmetric basic flow solutions to the time-dependent incompressible Navier–Stokes equations coupled via a Boussinesq approximation to a thermal transport equation for temperature. Solutions are obtained primarily at Rayleigh number $\mathit{Ra}=10^{9}$ and rotation parameters up to $Q=60$ (where $Q$ is a non-dimensional ratio between thermal boundary layer thickness and Ekman layer depth) at a fixed Prandtl number $\mathit{Pr}=6.14$ representative of water and enclosure height-to-radius ratio $H/R=0.4$. The axisymmetric solutions are consistently steady state at these parameters, and transition from a regime unaffected by rotation to an intermediate regime occurs at $Q\approx 1$ in which variation in thermal boundary layer thickness and Nusselt number are shown to be governed by a scaling proposed by Stern (1975, Ocean Circulation Physics. Academic). In this regime an increase in $Q$ sees the flow accumulate available potential energy and more strongly satisfy an inviscid change in potential energy criterion for baroclinic instability. At the strongest $Q$ the flow is dominated by rotation, accumulation of available potential energy ceases and horizontal convection is suppressed. A linear stability analysis reveals several instability mode branches, with dominant wavenumbers typically scaling with $Q$. Analysis of contributing terms of an azimuthally averaged perturbation kinetic energy equation applied to instability eigenmodes reveals that energy production by shear in the axisymmetric mean flow is negligible relative to that produced by conversion of available potential energy from the mean flow. An evolution equation for the quantity that facilitates this exchange, the vertical advective buoyancy flux, reveals that a baroclinic instability mechanism dominates over $5\lesssim Q\lesssim 30$, whereas stronger and weaker rotations are destabilised by vertical thermal gradients in the mean flow.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, D. G. & McIntyre, M. E. 1976 Planetary waves in horizontal and vertical shear: the generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci. 33 (11), 20312048.2.0.CO;2>CrossRefGoogle Scholar
Andrews, D. G. & McIntyre, M. E. 1978 Generalized Eliassen–Palm and Charney–Drazin theorems for waves in axisymmetric mean flows in compressible atmospheres. J. Atmos. Sci. 35 (2), 175185.Google Scholar
Barkan, R., Winters, K. B. & Smith, S. G. L. 2013 Rotating horizontal convection. J. Fluid Mech. 723, 556586.Google Scholar
Barkley, D. & Henderson, R. D. 1996 Three-dimensional floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322, 215242.Google Scholar
Bodenschatz, E., Pesch, W. & Ahlers, G. 2000 Recent developments in Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 32 (1), 709778.Google Scholar
Cessi, P. & Fantini, M. 2004 The eddy-driven thermocline. J. Phys. Oceanogr. 34, 26422658.Google Scholar
Charney, J. G. 1947 The dynamics of long waves in a baroclinic westerly current. J. Meteorol. 4 (5), 136162.Google Scholar
Cogan, S. J., Ryan, K. & Sheard, G. J. 2011 Symmetry breaking and instability mechanisms in medium depth torsionally driven open cylinder flows. J. Fluid Mech. 672, 521544.Google Scholar
Curbelo, J., Lopez, J. M., Mancho, A. M. & Marques, F. 2014 Confined rotating convection with large Prandtl number: centrifugal effects on wall modes. Phys. Rev. E 89 (1), 013019.Google Scholar
Eady, E. T. 1949 Long waves and cyclone waves. Tellus 1 (3), 3352.Google Scholar
Früh, W. & Read, P. L. 1999 Experiments on a barotropic rotating shear layer. Part 1. Instability and steady vortices. J. Fluid Mech. 383, 143173.Google Scholar
Gayen, B., Griffiths, R. W. & Hughes, G. O. 2014 Stability transitions and turbulence in horizontal convection. J. Fluid Mech. 751, 698724.CrossRefGoogle Scholar
Gill, A. E. 1982 Atmosphere-Ocean Dynamics, vol. 30. Academic.Google Scholar
Hadlock, R. K., Na, J. Y. & Stone, P. H. 1972 Direct thermal verification of symmetric baroclinic instability. J. Atmos. Sci. 29 (7), 13911393.Google Scholar
Hide, R. & Titman, C. W. 1967 Detached shear layers in a rotating fluid. J. Fluid Mech. 29 (01), 3960.Google Scholar
Hignett, P., Ibbetson, A. & Killworth, P. D. 1981 On rotating thermal convection driven by non-uniform heating from below. J. Fluid Mech. 109 (1), 161187.Google Scholar
Hughes, G. O. & Griffiths, R. W. 2008 Horizontal convection. Annu. Rev. Fluid Mech. 40, 185208.Google Scholar
Hussam, W. K., Tsai, T. K. & Sheard, G. J. 2014 The effect of rotation on radial horizontal convection and Nusselt number scaling in a cylindrical container. Intl J. Heat Mass Transfer 77, 4659.Google Scholar
Karniadakis, G. E., Israeli, M. & Orszag, S. A. 1991 High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97 (2), 414443.Google Scholar
King, E. M. & Aurnou, J. M. 2012 Thermal evidence for Taylor columns in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. E 85 (1), 016313.Google Scholar
Kuo, H. 1949 Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere. J. Atmos. Sci. 6 (2), 105122.Google Scholar
Lappa, M. 2012 Rotating Thermal Flows in Natural and Industrial Processes. John Wiley & Sons.Google Scholar
Lopez, J. M. & Marques, F. 2009 Centrifugal effects in rotating convection: nonlinear dynamics. J. Fluid Mech. 628, 269297.Google Scholar
Lopez, J. M., Marques, F. & Avila, M. 2013 The Boussinesq approximation in rapidly rotating flows. J. Fluid Mech. 737, 5677.Google Scholar
Marshall, J., Jones, H., Karsten, R. & Wardle, R. 2002 Can eddies set ocean stratification. J. Phys. Oceanogr. 32 (1), 2638.Google Scholar
Marshall, J. & Schott, F. 1999 Open-ocean convection: observations, theory, and models. Rev. Geophys. 691, 164.Google Scholar
Ménesguen, C., McWilliams, J. C. & Molemaker, M. J. 2012 Ageostrophic instability in a rotating stratified interior jet. J. Fluid Mech. 711, 599619.Google Scholar
Mullarney, J. C., Griffiths, R. W. & Hughes, G. O. 2004 Convection driven by differential heating at a horizontal boundary. J. Fluid Mech. 516, 181209.Google Scholar
Niino, H. & Misawa, N. 1984 An experimental and theoretical study of barotropic instability. J. Atmos. Sci. 41 (12), 19922011.Google Scholar
Park, Y. & Whitehead, J. A. 1999 Rotating convection driven by differential bottom heating. J. Phys. Oceanogr. 29 (6), 12081220.Google Scholar
Plumb, R. A. & Ferrari, R. 2005 Transformed Eulerian-mean theory. Part I: Nonquasigeostrophic theory for eddies on a zonal-mean flow. J. Phys. Oceanogr. 35 (2), 165174.Google Scholar
Rayleigh, L. 1879 On the stability, or instability, of certain fluid motions. Proc. Lond. Math. Soc. s1–11 (1), 5772.Google Scholar
Reid, W. H. & Harris, D. L. 1958 Some further results on the B’enard problem. Phys. Fluids 1, 102110.Google Scholar
Rossby, H. T. 1965 On thermal convection driven by non-uniform heating from below: an experimental study. Deep-Sea Res. 12 (1), 916.Google Scholar
Sheard, G. J. 2009 Flow dynamics and wall shear-stress variation in a fusifom aneurysm. J. Engng Maths. 592, 233262.Google Scholar
Sheard, G. J. & King, M. P. 2011 Horizontal convection: effect of aspect ratio on Rayleigh number scaling and stability. Appl. Math. Model. 35 (4), 16471655.Google Scholar
Sheard, G. J. & Ryan, K. 2007 Pressure-driven flow past spheres moving in a circular tube. J. Fluid Mech. 592, 233262.Google Scholar
Smith, R. 1976 Longitudinal dispersion of a buoyant contaminant in a shallow channel. J. Fluid Mech. 78 (4), 677688.CrossRefGoogle Scholar
Stern, M. E. 1975 Ocean Circulation Physics. Academic.Google Scholar
Stewartson, K. 1957 On almost rigid rotations. J. Fluid Mech. 3 (01), 1726.Google Scholar
Stone, P. H. 1966 On non-geostrophic baroclinic stability. J. Atmos. Sci. 23 (4), 390400.Google Scholar
Stone, P. H. 1970 On non-geostrophic baroclinic stability. Part II. J. Atmos. Sci. 27 (5), 721726.Google Scholar
Stone, P. H. 1971 Baroclinic stability under non-hydrostatic conditions. J. Fluid Mech. 45 (4), 659671.Google Scholar
Stone, P. H., Hess, S., Hadlock, R. & Ray, P. 1969 Preliminary results of experiments with symmetric baroclinic instabilities. J. Atmos. Sci. 26 (5), 991996.Google Scholar
Tsai, T., Hussam, W. K., Fouras, A. & Sheard, G. J. 2016 The origin of instability in enclosed horizontally driven convection. Intl J. Heat Mass Transfer 94, 509515.CrossRefGoogle Scholar
Vo, T., Montabone, L. & Sheard, G. J. 2014 Linear stability analysis of a shear layer induced by differential coaxial rotation within a cylindrical enclosure. J. Fluid Mech. 738, 299334.Google Scholar
Vo, T., Montabone, L. & Sheard, G. J. 2015 Effect of enclosure height on the structure and stability of shear layers induced by differential rotation. J. Fluid Mech. 765, 4581.Google Scholar
Whitehead, J. A. 1981 Laboratory models of circulation in shallow seas. Phil. Trans. R. Soc. Lond. A 302 (1472), 583595.Google Scholar
Winters, K. B. & Barkan, R. 2013 Available potential energy density for boussinesq fluid flow. J. Fluid Mech. 714, 476488.Google Scholar
Winters, K. B., Lombard, P. N., Riley, J. J. & D’Asaro, E. A. 1995 Available potential energy and mixing in density-stratified fluids. J. Fluid Mech. 289, 115128.Google Scholar
Winters, K. B. & Young, W. R. 2009 Available potential energy and buoyancy variance in horizontal convection. J. Fluid Mech. 629, 221230.Google Scholar
Wolfe, C. L. & Cessi, P. 2010 What sets the strength of the middepth stratification and overturning circulation in eddying ocean models. J. Phys. Oceanogr. 40 (7), 15201538.Google Scholar