Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-12-03T20:49:06.516Z Has data issue: false hasContentIssue false

Linear hydrodynamics and stability of the discrete velocity Boltzmann equations

Published online by Cambridge University Press:  17 June 2020

P.-A. Masset*
Affiliation:
CERFACS, 42 avenue Gaspard Coriolis, 31100Toulouse, France
G. Wissocq*
Affiliation:
CERFACS, 42 avenue Gaspard Coriolis, 31100Toulouse, France
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

The discrete velocity Boltzmann equations (DVBE) underlie the attainable properties of all numerical lattice Boltzmann methods (LBM). To that regard, a thorough understanding of their intrinsic hydrodynamic limits and stability properties is mandatory. To achieve this, we propose an analytical study of the eigenvalues obtained by a von Neumann perturbative analysis. It is shown that the Knudsen number, naturally defined as a particular dimensionless wavenumber in the athermal case, is sufficient to expand rigorously the eigenvalues of the DVBE and other fluidic systems such as Euler, Navier–Stokes and all Burnett equations. These expansions are therefore compared directly to one another. With this methodology, the influences of the lattice closure and equilibrium on the hydrodynamic limits and Galilean invariance are pointed out for the D1Q3 and D1Q4 lattices, without any ansatz. An analytical study of multi-relaxation time (MRT) models warns us of the errors and instabilities associated with the choice of arbitrarily large ratios of relaxation frequencies. Importantly, the notion of the Knudsen–Shannon number is introduced to understand which physics can be solved by a given LBM numerical scheme. This number is also shown to drive the practical stability of MRT schemes. In the light of the proposed methodology, the meaning of the Chapman–Enskog expansion applied to the DVBE in the linear case is clarified.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, N. H.1824 Mémoire sur les équations algébriques, où l’on démontre l’impossibilité de la résolution de l’équation générale du cinquième degré. Grondahl.Google Scholar
Alexeev, B. V. 2015 Chapter 1 – generalized Boltzmann equation. In Unified Non-Local Theory of Transport Processes, 2nd edn (ed. Alexeev, B.V.), pp. 151. Elsevier.Google Scholar
Banda, M. K., Yong, W.-A. & Klar, A. 2006 A stability notion for lattice Boltzmann equations. SIAM J. Sci. Comput. 27 (6), 20982111.CrossRefGoogle Scholar
Bao, F. B., Zhu, Z. H. & Lin, J. Z. 2012 Linearized stability analysis of two-dimension Burnett equations. Appl. Math. Model. 36 (5), 19021909.CrossRefGoogle Scholar
Benzi, R., Succi, S. & Vergassola, M. 1992 The lattice Boltzmann equation: theory and applications. Phys. Rep. 222 (3), 145197.Google Scholar
Bhatnagar, P. L., Gross, E. P. & Krook, M. 1954 A model for collision processes in gases. i. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. E 94 (3), 511.CrossRefGoogle Scholar
Bird, G. A. & Brady, J. M. 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows, vol. 5. Clarendon Press.Google Scholar
Bird, R. B., Armstrong, R. C. & Hassager, O. 1987 Dynamics of Polymeric Liquids. Vol. 1: Fluid Mechanics. Wiley.Google Scholar
Bobylev, A. V. 2018 Boltzmann equation and hydrodynamics beyond Navier–Stokes. Phil. Trans. R. Soc. Lond. A 376 (2118), 20170227.Google ScholarPubMed
Boltzmann, L. E. 1872 Weitere studien über das wärmegleichgewicht unter gasmolekülen. Wiener Berichte 66, 275370.Google Scholar
Chapman, S. & Cowling, T. G. 1939 The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion in Gases. Cambridge University Press.Google Scholar
Chiappini, D., Sbragaglia, M., Xue, X. & Falcucci, G. 2019 Hydrodynamic behavior of the pseudopotential lattice Boltzmann method for interfacial flows. Phys. Rev. E 99, 053305.Google ScholarPubMed
Chikatamarla, S. S. & Karlin, I. V. 2009 Lattices for the lattice Boltzmann method. Phys. Rev. E 79 (4), 046701.Google ScholarPubMed
Coreixas, C.2018 High-order extension of the recursive regularized lattice Boltzmann method. PhD thesis, Université de Toulouse.Google Scholar
De Rosis, A. 2017 Non-orthogonal central moments relaxing to a discrete equilibrium: a D2Q9 lattice Boltzmann model. Eur. Phys. Lett. 116 (4), 44003.Google Scholar
Dellar, P. J. 2001 Bulk and shear viscosities in lattice Boltzmann equations. Phys. Rev. E 64 (3), 031203.Google ScholarPubMed
d’Humières, D. 1992 Generalized lattice-Boltzmann equations. Rarefied Gas Dyn. Theory Simul. 159, 450458.Google Scholar
d’Humieres, D. 2002 Multiple–relaxation–time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. Lond. A 360 (1792), 437451.CrossRefGoogle ScholarPubMed
Falcucci, G., Amati, G., Krastev, V. K., Montessori, A., Yablonsky, G. S. & Succi, S. 2017 Heterogeneous catalysis in pulsed-flow reactors with nanoporous gold hollow spheres. Chem. Engng Sci. 166, 274282.CrossRefGoogle Scholar
Falcucci, G., Ubertini, S., Chiappini, D. & Succi, S. 2011 Modern lattice Boltzmann methods for multiphase microflows. IMA J. Appl. Maths 76 (5), 712725.CrossRefGoogle Scholar
Feng, Y., Boivin, P., Jacob, J. & Sagaut, P. 2019 Hybrid recursive regularized thermal lattice Boltzmann model for high subsonic compressible flows. J. Comput. Phys. 394, 8299.CrossRefGoogle Scholar
Geier, M., Greiner, A. & Korvink, J. G. 2006 Cascaded digital lattice Boltzmann automata for high Reynolds number flow. Phys. Rev. E 73 (6), 066705.Google ScholarPubMed
Geier, M., Schönherr, M., Pasquali, A. & Krafczyk, M. 2015 The cumulant lattice Boltzmann equation in three dimensions: theory and validation. Comput. Maths Applics 70 (4), 507547.CrossRefGoogle Scholar
Ginzbourg, I. & Adler, P. M. 1994 Boundary flow condition analysis for the three-dimensional lattice Boltzmann model. J. Phys. II 4 (2), 191214.Google Scholar
Giraud, L., d’Humières, D. & Lallemand, P. 1997 A lattice-Boltzmann model for visco-elasticity. Intl J. Mod. Phys. C 8 (04), 805815.CrossRefGoogle Scholar
Gorban, A. N., Gallagher, I., Corry, L., Ozawa, M., Hangos, K., Golse, F., D’Ariano, G. & Slemrod, M. 2018 Hilbert’s sixth problem: The endless road to rigour. Phil. Trans. R. Soc. Lond. A 376, 2118.Google ScholarPubMed
Gorban, A. & Karlin, I. 2014 Hilberts 6th problem: exact and approximate hydrodynamic manifolds for kinetic equations. Bull. Am. Math. Soc. 51 (2), 187246.CrossRefGoogle Scholar
Grad, H. 1949a Note on N-dimensional hermite polynomials. Commun. Pure Appl. Maths 2 (4), 325330.CrossRefGoogle Scholar
Grad, H. 1949b On the kinetic theory of rarefied gases. Commun. Pure Appl. Maths 2 (4), 331407.CrossRefGoogle Scholar
Higuera, F. J. & Jiménez, J. 1989 Boltzmann approach to lattice gas simulations. Eur. Phys. Lett. 9 (7), 663668.CrossRefGoogle Scholar
Hilbert, D. 1902 Mathematical problems. Bull. Am. Math. Soc. 8 (10), 437479.CrossRefGoogle Scholar
Hilbert, D. 1912 Begründung der kinetischen gastheorie. Math. Ann. 72 (4), 562577.Google Scholar
Hosseini, S. A., Coreixas, C., Darabiha, N. & Thévenin, D. 2019 Stability of the lattice kinetic scheme and choice of the free relaxation parameter. Phys. Rev. E 99 (6), 063305.Google ScholarPubMed
Karlin, I., Chikatamarla, S. & Asinari, P. 2010 Factorization symmetry in the lattice Boltzmann method. Physica A 389, 15301548.CrossRefGoogle Scholar
Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G. & Viggen, E. M. 2017 MRT and TRT Collision Operators, pp. 407431. Springer.Google Scholar
Lallemand, P. & Luo, L.-S. 2000 Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61 (6), 6546.Google ScholarPubMed
Latt, J.2007 Hydrodynamic limit of lattice Boltzmann equations. PhD thesis, University of Geneva.Google Scholar
Latt, J. & Chopard, B. 2006 Lattice Boltzmann method with regularized pre-collision distribution functions. Maths Comput. Simul. 72 (2-6), 165168.CrossRefGoogle Scholar
Laurendeau, N. M. 2005 Statistical Thermodynamics: Fundamentals and Applications. Cambridge University Press.CrossRefGoogle Scholar
Li, J.2015 Chapman–Enskog expansion in the lattice Boltzmann method. Preprint, arXiv:1512.02599.Google Scholar
Maxwell, J. C. 1860 V. Illustrations of the dynamical theory of gases. Part I. On the motions and collisions of perfectly elastic spheres. Lond. Edinb. Dublin Philos. Mag. J. Sci. 19 (124), 1932.CrossRefGoogle Scholar
McLennan, J. A. 1965 Convergence of the Chapman–Enskog expansion for the linearized Boltzmann equation. Phys. Fluids 8 (9), 15801584.CrossRefGoogle Scholar
McNamara, G. R., Garcia, A. L. & Alder, B. J. 1995 Stabilization of thermal lattice Boltzmann models. J. Stat. Phys. 81 (1-2), 395408.CrossRefGoogle Scholar
McNamara, G. R. & Zanetti, G. 1988 Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett. 61 (20), 2332.CrossRefGoogle ScholarPubMed
Mika, J. 1981 Hilbert and Chapman–Enskog asymptotic expansion methods for linear evolution equations. Prog. Nucl. Energy 8 (2-3), 8394.CrossRefGoogle Scholar
Montessori, A., Prestininzi, P., La Rocca, M. & Succi, S. 2015 Lattice Boltzmann approach for complex nonequilibrium flows. Phys. Rev. E 92, 043308.Google ScholarPubMed
Montessori, A., Prestininzi, P., Rocca, M. L., Falcucci, G., Succi, S. & Kaxiras, E. 2016 Effects of Knudsen diffusivity on the effective reactivity of nanoporous catalyst media. J. Comput. Sci. 17, 377383.CrossRefGoogle Scholar
Noble, D. R., Georgiadis, J. G. & Buckius, R. O. 1996 Comparison of accuracy and performance for lattice Boltzmann and finite difference simulations of steady viscous flow. Intl J. Numer. Meth. Fluids 23 (1), 118.3.0.CO;2-V>CrossRefGoogle Scholar
Nyquist, H. 1928 Certain topics in telegraph transmission theory. Trans. Am. Inst. Electr. Engrs 47 (2), 617644.CrossRefGoogle Scholar
Philippi, P. C., Hegele, L. A., dos Santos, L. O. E. & Surmas, R. 2006 From the continuous to the lattice Boltzmann equation: the discretization problem and thermal models. Phys. Rev. E 73 (5), 056702.Google ScholarPubMed
Prasianakis, N. I. & Karlin, I. V. 2007 Lattice Boltzmann method for thermal flow simulation on standard lattices. Phys. Rev. E 76 (1), 016702.Google ScholarPubMed
Qian, Y.-H., d’Humières, D. & Lallemand, P. 1992 Lattice BGK models for Navier–Stokes equation. Eur. Phys. Lett. 17 (6), 479.CrossRefGoogle Scholar
Shan, X. 2016 The mathematical structure of the lattices of the lattice Boltzmann method. J. Comput. Sci. 17, 475481.CrossRefGoogle Scholar
Shan, X., Yuan, X.-F. & Chen, H. 2006 Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation. J. Fluid Mech. 550, 413441.CrossRefGoogle Scholar
Shannon, C. E. 1949 Communication in the presence of noise. Proc. IRE 37 (1), 1021.CrossRefGoogle Scholar
Siebert, D. N., Hegele, L. A. Jr & Philippi, P. C. 2008 Lattice Boltzmann equation linear stability analysis: thermal and athermal models. Phys. Rev. E 77 (2), 026707.Google ScholarPubMed
Slemrod, M. 2018 Hilbert’s sixth problem and the failure of the Boltzmann to Euler limit. Phil. Trans. R. Soc. Lond. A 376 (2118), 20170222.Google ScholarPubMed
Söderholm, L. H. 2008 On the relation between the Hilbert and Chapman–Enskog expansions. In AIP Conference Proceedings, vol. 1084, pp. 8186. AIP.CrossRefGoogle Scholar
Sterling, J. D. & Chen, S. 1996 Stability analysis of lattice Boltzmann methods. J. Comput. Phys. 123 (1), 196206.CrossRefGoogle Scholar
Succi, S., Benzi, R. & Higuera, F. 1991 The lattice Boltzmann equation: a new tool for computational fluid-dynamics. Physica D 47 (1-2), 219230.CrossRefGoogle Scholar
Toschi, F. & Succi, S. 2005 Lattice Boltzmann method at finite Knudsen numbers. Europhys. Lett. 69 (4), 549555.CrossRefGoogle Scholar
Velivelli, A. C. & Bryden, K. M. 2006 Parallel performance and accuracy of lattice Boltzmann and traditional finite difference methods for solving the unsteady two-dimensional Burger’s equation. Physica A 362 (1), 139145.CrossRefGoogle Scholar
Villani, C. 2001 Limites hydrodynamiques de l’équation de Boltzmann. In Séminaire Bourbaki 2000/2001, pp. 365405. Société Mathématique de France.Google Scholar
Wilde, D., Krämer, A., Küllmer, K., Foysi, H. & Reith, D. 2019 Multistep lattice Boltzmann methods: theory and applications. Intl J. Numer. Meth. Fluids 90 (3), 156169.CrossRefGoogle Scholar
Wissocq, G.2019 Investigation of lattice Boltzmann methods for turbomachinery secondary air system simulations. PhD thesis, Aix-Marseille University.Google Scholar
Wissocq, G., Sagaut, P. & Boussuge, J.-F. 2019 An extended spectral analysis of the lattice Boltzmann method: modal interactions and stability issues. J. Comput. Phys. 380, 311333.CrossRefGoogle Scholar