Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T19:17:15.061Z Has data issue: false hasContentIssue false

Levitation of non-magnetizable droplet inside ferrofluid

Published online by Cambridge University Press:  22 October 2018

Chamkor Singh
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur 721302, India Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Goettingen, Germany
Arup K. Das
Affiliation:
Department of Mechanical and Industrial Engineering, Indian Institute of Technology, Roorkee 247667, India
Prasanta K. Das*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur 721302, India
*
Email address for correspondence: [email protected]

Abstract

The central theme of this work is that a stable levitation of a denser non-magnetizable liquid droplet, against gravity, inside a relatively lighter ferrofluid – a system barely considered in ferrohydrodynamics – is possible, and exhibits unique interfacial features; the stability of the levitation trajectory, however, is subject to an appropriate magnetic field modulation. We explore the shapes and the temporal dynamics of a plane non-magnetizable droplet levitating inside a ferrofluid against gravity due to a spatially complex, but systematically generated, magnetic field in two dimensions. The coupled set of Maxwell’s magnetostatic equations and the flow dynamic equations is integrated computationally, utilizing a conservative finite-volume-based second-order pressure projection algorithm combined with the front-tracking algorithm for the advection of the interface of the droplet. The dynamics of the droplet is studied under both the constant ferrofluid magnetic permeability assumption as well as for more realistic field-dependent permeability described by Langevin’s nonlinear magnetization model. Due to the non-homogeneous nature of the magnetic field, unique shapes of the droplet during its levitation, and at its steady state, are realized. The complete spatio-temporal response of the droplet is a function of the Laplace number $La$, the magnetic Laplace number $La_{m}$ and the Galilei number $Ga$; through detailed simulations we separate out the individual roles played by these non-dimensional parameters. The effect of the viscosity ratio, the stability of the levitation path and the possibility of existence of multiple stable equilibrium states is investigated. We find, for certain conditions on the viscosity ratio, that there can be developments of cusps and singularities at the droplet surface; we also observe this phenomenon experimentally and compare with the simulations. Our simulations closely replicate the singular projection on the surface of the levitating droplet. Finally, we present a dynamical model for the vertical trajectory of the droplet. This model reveals a condition for the onset of levitation and the relation for the equilibrium levitation height. The linearization of the model around the steady state captures that the nature of the equilibrium point goes under a transition from being a spiral to a node depending upon the control parameters, which essentially means that the temporal route to the equilibrium can be either monotonic or undulating. The analytical model for the droplet trajectory is in close agreement with the detailed simulations.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afkhami, S., Renardy, Y., Renardy, M., Riffle, J. S. & St Pierre, T. 2008 Field-induced motion of ferrofluid droplets through immiscible viscous media. J. Fluid Mech. 610, 363380.Google Scholar
Afkhami, S., Tyler, A. J., Renardy, Y., Renardy, M., St Pierre, T. G., Woodward, R. C. & Riffle, J. S. 2010 Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields. J. Fluid Mech. 663, 358384.Google Scholar
Bacri, J.-C., Cebers, A. O. & Perzynski, R. 1994 Behavior of a magnetic fluid microdrop in a rotating magnetic field. Phys. Rev. Lett. 72 (17), 27052708.Google Scholar
Bacri, J.-C. & Salin, D. 1983 Bistability of ferrofluid magnetic drops under magnetic field. J. Magn. Magn. Mater. 39 (1), 4850.Google Scholar
Bashtovoi, V., Pogirnitskaya, S. & Reks, A. 1999 Dynamics of deformation of magnetic fluid flat drops in a homogeneous longitudinal magnetic field. J. Magn. Magn. Mater. 201 (1), 300302.Google Scholar
Beysens, D. A. & van Loon, J. J. W. A. 2015 Generation and Applications of Extra-terrestrial Environments on Earth. River Publishers.Google Scholar
Chen, C.-Y. & Cheng, Z.-Y. 2008 An experimental study on Rosensweig instability of a ferrofluid droplet. Phys. Fluids 20 (5), 054105.Google Scholar
Chen, C.-Y. & Li, C.-S. 2010 Ordered microdroplet formations of thin ferrofluid layer breakups. Phys. Fluids 22 (1), 014105.Google Scholar
Dunne, P. A., Hilton, J. & Coey, J. M. D. 2007 Levitation in paramagnetic liquids. J. Magn. Magn. Mater. 316 (2), 273276.Google Scholar
Duplat, J. & Mailfert, A. 2013 On the bubble shape in a magnetically compensated gravity environment. J. Fluid Mech. 716, R11.Google Scholar
Fattah, A. R. A., Ghosh, S. & Puri, I. K. 2016 Printing microstructures in a polymer matrix using a ferrofluid droplet. J. Magn. Magn. Mater. 401, 10541059.Google Scholar
Geim, A. K., Simon, M. D., Boamfa, M. I. & Heflinger, L. O. 1999 Magnet levitation at your fingertips. Nature 400 (6742), 323324.Google Scholar
Gondret, P. & Rabaud, M. 1997 Shear instability of two-fluid parallel flow in a Hele-Shaw cell. Phys. Fluids 9 (11), 32673274.Google Scholar
Gu, Y., Bragheri, F., Valentino, G., Morris, K., Bellini, N. & Osellame, R. 2015 Ferrofluid-based optofluidic switch using femtosecond laser-micromachined waveguides. Appl. Opt. 54 (6), 14201425.Google Scholar
Gu, Y., Chow, H. & Morris, K. 2016 Motion of ferrofluid droplets under oscillating magnetic field. In Bulletin of the American Physical Society, APS March Meeting 2016, vol. 61. American Physical Society.Google Scholar
Halbach, K. 1985 Application of permanent magnets in accelerators and electron storage rings. J. Appl. Phys. 57 (8), 36053608.Google Scholar
Huber, F. & Littke, W. 1996 Technology experiments for magnetic levitation in transparent ferrofluids. In Space Station Utilisation, Symposium Proceedings, Darmstadt, vol. 385, pp. 479481.Google Scholar
Ikezoe, Y., Hirota, N., Nakagawa, J. & Kitazawa, K. 1998 Making water levitate. Nature 393 (6687), 749750.Google Scholar
Jackson, D. P. 2005 Theory, experiment, and simulations of a symmetric arrangement of quasi-two-dimensional magnetic fluid drops. J. Magn. Magn. Mater. 289, 188191.Google Scholar
Jackson, D. P. & Miranda, J. A. 2007 Confined ferrofluid droplet in crossed magnetic fields. Eur. Phys. J. E 23 (4), 389396.Google Scholar
Kim, D., Yu, S., Kang, B.-G. & Yun, K.-S. 2015 Liquid-based electrostatic energy harvester using rotational motion of ferrofluid droplets. In 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2015 Transducers, pp. 5961. IEEE.Google Scholar
Kim, D. & Yun, K. S. 2015 Energy harvester using contact-electrification of magnetic fluid droplets under oscillating magnetic field. J. Phys.: Conf. Ser. 660, 012108.Google Scholar
Kim, H. & Lim, H. 2015 Mode pattern of internal flow in a water droplet on a vibrating hydrophobic surface. J. Phys. Chem. B 119 (22), 67406746.Google Scholar
Koh, W. H., Lok, K. S. & Nguyen, N.-T. 2013 A digital micro magnetofluidic platform for lab-on-a-chip applications. Trans. ASME J. Fluids Engng 135 (2), 021302.Google Scholar
Korlie, M. S., Mukherjee, A., Nita, B. G., Stevens, J. G., Trubatch, A. D. & Yecko, P. 2008 Modeling bubbles and droplets in magnetic fluids. J. Phys.: Condens. Matter 20 (20), 204143.Google Scholar
Kovalchuk, N. M. & Vollhardt, D. 2001 A numerical study of surface tension auto-oscillations. Effect of surfactant properties. J. Phys. Chem. B 105 (20), 47094714.Google Scholar
Limbach, C. M., Robinson, R., Adams, D., Wilbanks, M. & Yalin, A. P. 2016 Toward a microscopic study of laser interactions with levitated liquid fuel droplets. In 47th AIAA Plasmadynamics and Lasers Conference. AIAA.Google Scholar
Lira, S. A. & Miranda, J. A. 2016 Ferrofluid patterns in Hele-Shaw cells: exact, stable, stationary shape solutions. Phys. Rev. E 93 (1), 013129.Google Scholar
Liu, J., Tan, S.-H., Yap, Y. F., Ng, M. Y. & Nguyen, N.-T. 2011a Numerical and experimental investigations of the formation process of ferrofluid droplets. Microfluid. Nanofluid. 11 (2), 177187.Google Scholar
Liu, J., Yap, Y. F. & Nguyen, N.-T. 2011b Numerical study of the formation process of ferrofluid droplets. Phys. Fluids 23 (7), 072008.Google Scholar
Liu, S., Yi, X., Leaper, M. & Miles, N. J. 2014 Horizontal deflection of single particle in a paramagnetic fluid. Eur. Phys. J. E 37 (6), 19.Google Scholar
Mirica, K. A., Shevkoplyas, S. S., Phillips, S. T., Gupta, M. & Whitesides, G. M. 2009 Measuring densities of solids and liquids using magnetic levitation: fundamentals. J. Am. Chem. Soc. 131 (29), 1004910058.Google Scholar
Mugele, F., Baret, J. C. & Steinhauser, D. 2006 Microfluidic mixing through electrowetting-induced droplet oscillations. Appl. Phys. Lett. 88 (20), 204106.Google Scholar
Nguyen, N.-T. 2013 Deformation of ferrofluid marbles in the presence of a permanent magnet. Langmuir 29 (45), 1398213989.Google Scholar
Olaru, R., Petrescu, C. & Arcire, A. 2013 Maximizing the magnetic force generated by an actuator with non-magnetic body in a ferrofluid pre-magnetized by permanent magnets. Intl Rev. Elec. Eng. (IREE) 8 (2), 904911.Google Scholar
Pamme, N. 2006 Magnetism and microfluidics. Lab on a Chip 6 (1), 2438.Google Scholar
Price, C. J., Giltrap, S., Stuart, N. H., Parker, S., Patankar, S., Lowe, H. F., Smith, R. A., Donnelly, T. D., Drew, D., Gumbrell, E. T. et al. 2015 An in-vacuo optical levitation trap for high-intensity laser interaction experiments with isolated microtargets. Rev. Sci. Instrum. 86 (3), 033502.Google Scholar
Rosenkilde, C. E. 1969 A dielectric fluid drop an electric field. Proc. R. Soc. Lond. A 312, 473494.Google Scholar
Rosensweig, R. E. 1966 Buoyancy and stable levitation of a magnetic body immersed in a magnetizable fluid. Nature 210, 613614.Google Scholar
Rosensweig, R. E. 1985 Ferrohydrodynamics. Cambridge University Press.Google Scholar
Rowghanian, P., Meinhart, C. D. & Campàs, O. 2016 Dynamics of ferrofluid drop deformations under spatially uniform magnetic fields. J. Fluid Mech. 802, 245262.Google Scholar
Ruyer-Quil, C. 2001 Inertial corrections to the darcy law in a Hele-Shaw cell. C. R. Acad. Sci. Ser. II B 329 (5), 337342.Google Scholar
Sandre, O., Browaeys, J., Perzynski, R., Bacri, J.-C., Cabuil, V. & Rosensweig, R. E. 1999 Assembly of microscopic highly magnetic droplets: magnetic alignment versus viscous drag. Phys. Rev. E 59 (2), 1736.Google Scholar
Sero-Guillaume, O. E., Zouaoui, D., Bernardin, D. & Brancher, J. P. 1992 The shape of a magnetic liquid drop. J. Fluid Mech. 241, 215232.Google Scholar
Sherwood, J. D. 1988 Breakup of fluid droplets in electric and magnetic fields. J. Fluid Mech. 188, 133146.Google Scholar
Singh, C., Das, A. K. & Das, P. K. 2016a Flow restrictive and shear reducing effect of magnetization relaxation in ferrofluid cavity flow. Phys. Fluids 28 (8), 087103.Google Scholar
Singh, C., Das, A. K. & Das, P. K. 2016b Single-mode instability of a ferrofluid-mercury interface under a nonuniform magnetic field. Phys. Rev. E 94 (1), 012803.Google Scholar
Stone, H. A., Lister, J. R. & Brenner, M. P. 1999 Drops with conical ends in electric and magnetic fields. Proc. R. Soc. Lond. A 455, 329347.Google Scholar
Tan, S.-H., Nguyen, N.-T., Yobas, L. & Kang, T. G. 2010 Formation and manipulation of ferrofluid droplets at a microfluidic t-junction. J. Micromech. Microengng 20 (4), 045004.Google Scholar
Taylor, G. 1964 Disintegration of water drops in an electric field. Proc. R. Soc. Lond. A 280, 383397.Google Scholar
Timonen, J. V. I., Latikka, M., Leibler, L., Ras, R. H. A. & Ikkala, O. 2013 Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces. Science 341 (6143), 253257.Google Scholar
Trinh, E. H. 1985 Compact acoustic levitation device for studies in fluid dynamics and material science in the laboratory and microgravity. Rev. Sci. Instrum. 56 (11), 20592065.Google Scholar
Tryggvason, G., Scardovelli, R. & Zaleski, S. 2011 Direct Numerical Simulations of Gas–Liquid Multiphase Flows. Cambridge University Press.Google Scholar
Ueno, K., Higashitani, M. & Kamiyama, S. 1995 Study on single bubbles rising in magnetic fluid for small Weber number. J. Magn. Magn. Mater. 149 (1–2), 104107.Google Scholar
Ueno, K., Nishita, T. & Kamiyama, S. 1999 Numerical simulation of deformed single bubbles rising in magnetic fluid. J. Magn. Magn. Mater. 201 (1), 281284.Google Scholar
Unverdi, S. O. & Tryggvason, G. 1992 A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100 (1), 2537.Google Scholar
Verkouteren, R. M. & Verkouteren, J. R. 2011 Inkjet metrology II: resolved effects of ejection frequency, fluidic pressure, and droplet number on reproducible drop-on-demand dispensing. Langmuir 27 (15), 96449653.Google Scholar
Vojtíšek, M., Tarn, M. D., Hirota, N. & Pamme, N. 2012 Microfluidic devices in superconducting magnets: on-chip free-flow diamagnetophoresis of polymer particles and bubbles. Microfluid. Nanofluid. 13 (4), 625635.Google Scholar
Whitehill, J., Neild, A., Ng, T. W., Martyn, S. & Chong, J. 2011 Droplet spreading using low frequency vibration. Appl. Phys. Lett. 98 (13), 133503.Google Scholar
Wohlhuter, F. K. & Basaran, O. A. 1993 Effects of physical properties and geometry on shapes and stability of polarizable drops in external fields. J. Magn. Magn. Mater. 122 (1–3), 259263.Google Scholar
Wojciechowski, K. & Kucharek, M. 2009 Interfacial tension oscillations without surfactant transfer. J. Phys. Chem. B 113 (41), 1345713461.Google Scholar
Wu, Y., Fu, T., Ma, Y. & Li, H. Z. 2013 Ferrofluid droplet formation and breakup dynamics in a microfluidic flow-focusing device. Soft Matt. 9 (41), 97929798.Google Scholar
Zhu, G.-P., Nguyen, N.-T., Ramanujan, R. V. & Huang, X.-Y. 2011a Nonlinear deformation of a ferrofluid droplet in a uniform magnetic field. Langmuir 27 (24), 1483414841.Google Scholar
Zhu, T. 2013 Microfluidic Continuous-flow Manipulation of Particles and Cells Inside Ferrofluids. Uga.Google Scholar
Zhu, T., Lichlyter, D. J., Haidekker, M. A. & Mao, L. 2011b Analytical model of microfluidic transport of non-magnetic particles in ferrofluids under the influence of a permanent magnet. Microfluid. Nanofluid. 10 (6), 12331245.Google Scholar