No CrossRef data available.
Article contents
Leveraging initial conditions memory for modelling Rayleigh–Taylor turbulence
Published online by Cambridge University Press: 14 April 2025
Abstract
In this study, we tackle the challenge of inferring the initial conditions of a Rayleigh–Taylor mixing zone for modelling purposes by analysing zero-dimensional (0-D) turbulent quantities measured at an unspecified time. This approach assesses the extent to which 0-D observations retain the memory of the flow, evaluating their effectiveness in determining initial conditions and, consequently, in predicting the flow’s evolution. To this end, we generated a comprehensive dataset of direct numerical simulations, focusing on miscible fluids with low density contrasts. The initial interface deformations in these simulations are characterised by an annular spectrum parametrised by four non-dimensional numbers. To study the sensitivity of 0-D turbulent quantities to initial perturbation distributions, we developed a surrogate model using a physics-informed neural network (PINN). This model enables computation of the Sobol indices for the turbulent quantities, disentangling the effects of the initial parameters on the growth of the mixing layer. Within a Bayesian framework, we employ a Markov chain Monte Carlo (MCMC) method to determine the posterior distributions of initial conditions and time, given various state variables. This analysis sheds light on inertial and diffusive trajectories, as well as the progressive loss of initial conditions memory during the transition to turbulence. Furthermore, it identifies which turbulent quantities serve as better predictors of Rayleigh–Taylor mixing zone dynamics by more effectively retaining the memory of the flow. By inferring initial conditions and forward propagating the maximum a posteriori (MAP) estimate, we propose a strategy for modelling the Rayleigh–Taylor transition to turbulence.
- Type
- JFM Papers
- Information
- Copyright
- © The Author(s), 2025. Published by Cambridge University Press
References
