Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T17:03:55.034Z Has data issue: false hasContentIssue false

Lattice Boltzmann method with self-consistent thermo-hydrodynamic equilibria

Published online by Cambridge University Press:  01 June 2009

M. SBRAGAGLIA*
Affiliation:
Department of Physics and INFN, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
R. BENZI
Affiliation:
Department of Physics and INFN, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
L. BIFERALE
Affiliation:
Department of Physics and INFN, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
H. CHEN
Affiliation:
EXA Corporation, 55 Network Drive, Burlington, MA 01803, USA
X. SHAN
Affiliation:
EXA Corporation, 55 Network Drive, Burlington, MA 01803, USA
S. SUCCI
Affiliation:
Istituto per le Applicazioni del Calcolo CNR, Viale del Policlinico 137, 00161 Roma, Italy
*
Email address for correspondence: [email protected]

Abstract

Lattice kinetic equations incorporating the effects of external/internal force fields via a shift of the local fields in the local equilibria are placed within the framework of continuum kinetic theory. The mathematical treatment reveals that in order to be consistent with the correct thermo-hydrodynamical description, temperature must also be shifted, besides momentum. New perspectives for the formulation of thermo-hydrodynamic lattice kinetic models of non-ideal fluids are then envisaged. It is also shown that on the lattice, the definition of the macroscopic temperature requires the inclusion of new terms directly related to discrete effects. The theoretical treatment is tested against a controlled case with a non-ideal equation of state.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large-scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.CrossRefGoogle Scholar
Ansumali, S & Karlin, I. 2002 Kinetic boundary conditions in the lattice Boltzmann method. Phys. Rev. E 66, 026311.CrossRefGoogle ScholarPubMed
Bathnagar, P.-L., Gross, E. & Krook, M. 1954 A model for collision processes in gases. Phys. Rev. 94, 511525.Google Scholar
Benzi, R., Succi, S. & Vergassola, M. 1992 The lattice Boltzmann equation: theory and applications. Phys. Rep. 222, 145197.CrossRefGoogle Scholar
Boghosian, B. M. 2008 Exact hydrodynamics of the lattice BGK equation. arXiv:0810.2344v1.Google Scholar
Brennen, C. 2005 Fundamentals of Multiphase Flow. Cambridge University Press.CrossRefGoogle Scholar
Buick, J. M. & Greated, C. A. 2000 Gravity in a lattice Boltzmann model. Phys. Rev. E 61, 53075320CrossRefGoogle Scholar
Chen, S. & Doolen, G. 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329364.CrossRefGoogle Scholar
Ginzbourg, I & Adler, P. M. 1994 Boundary flow condition analysis for the 3-dimensional lattice Boltzmann model. J. Phys. II 2, 191214.Google Scholar
Gonnella, G., Lamura, A. & Sofonea, V. 2007 Lattice Boltzmann simulation of thermal nonideal fluids. Phys. Rev. E 76, 036703.CrossRefGoogle ScholarPubMed
Gradshtein, I. S. & Ryzhik, I. M. 2000 Tables of Integrals and Series, 6th edn. Academic.Google Scholar
Guo, Z., Zheng, C. & Shi, B. 2002 Discrete lattice effects on the forcing term in the lattice Boltzmann method, Phys. Rev. E 65, 046308.CrossRefGoogle ScholarPubMed
He, X. & Doolen, G. 2001 Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase Flows. J. Stat. Phys. 107, 309328.CrossRefGoogle Scholar
He, X. & Luo, L. S. 1997 Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56 68116817.CrossRefGoogle Scholar
Ladd, 1994 Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J. Fluid Mech. 271 311339.CrossRefGoogle Scholar
Li, Q. & Wagner, A. J. 2007 Symmetric free-energy-based multicomponent lattice Boltzmann method. Phys. Rev. E 76, 036701.CrossRefGoogle ScholarPubMed
Martys, N. S., Shan, X. & Chen, H. 1998 Evaluation of the external force term in the discrete Boltzmann equation. Phys. Rev. E 58, 6865.CrossRefGoogle Scholar
Nie, X., Shan, X. & Chen, H. 2008 Thermal lattice Boltzmann model for gases with internal degrees of freedom. Phys. Rev. E 77, 035701(R).CrossRefGoogle ScholarPubMed
Novikov, E. A. 1964 Functionals and the method of random forces in turbulence theory. Zh. Exp. Teor. Fiz. 47, 19191926.Google Scholar
Qi, D. W. 2006 Direct simulations of flexible cylindrical fibres suspensions in finite Reynolds numbers flows. J. Chem. Phys. 125, 114901.CrossRefGoogle ScholarPubMed
Rowlinson, J. R. & Widom, B. 1982 Molecular Theory of Capillarity. Clarendon.Google Scholar
Shan, X. & Chen, H. 1993 Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47, 1815.CrossRefGoogle ScholarPubMed
Shan, X. & He, X. 1998 Discretization of the velocity space in the solution of the Boltzmann equation. Phys. Rev. Lett. 80, 6568.CrossRefGoogle Scholar
Shan, X., Yuan, F. & Chen, H. 2006 Kinetic theory representation of hydrodynamics: a way beyond the Navier—Stokes equation. J. Fluid Mech. 550, 413441.CrossRefGoogle Scholar
Snider, R. F. 1995 Conversion between kinetic energy and potential energy in the classical non-local Boltzmann equation. J. Stat. Phys. 80, 10851117.CrossRefGoogle Scholar
Swift, M. R., Osborn, W. R. & Yeomans, J. M. 1995 Lattice Boltzmann simulation of nonideal fluids. Phys. Rev. Lett. 75, 830833.CrossRefGoogle ScholarPubMed
Wolf-Gladrow, D. 2000 Lattice-Gas Cellular Automata and Lattice Boltzmann Models. Springer.CrossRefGoogle Scholar
Succi, S., Karlin, I. & Chen, H. 2002 Colloquium: role of the H theorem in lattice Boltzmann hydrodynamic simulations. Rev. Mod. Phys. 74, 1203.CrossRefGoogle Scholar