Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T20:47:23.330Z Has data issue: false hasContentIssue false

Laterally converging duct flows. Part 4. Temporal behaviour in the viscous layer

Published online by Cambridge University Press:  26 August 2009

DONALD M. McELIGOT*
Affiliation:
Aerospace and Mechanical Engineering Department, University of Arizona, Tucson, AZ 85721, USA Institut für Kernenergetik und Energiesysteme (IKE), Universität Stuttgart, D-70569 Stuttgart, Deutschland Idaho National Laboratory (INL), Idaho Falls, ID 83415-3885, USA Stokes Research Institute, University of Limerick, Limerick, Ireland
ROBERT S. BRODKEY
Affiliation:
Chemical and Biomolecular Engineering Department, Ohio State University, Columbus, OH 43210, USA
HELMUT ECKELMANN
Affiliation:
Institut für Nichtlineare Dynamik, Universität Göttingen, D37073 Göttingen, Deutschland Max-Planck-Institut für Dynamik und Selbstorganisation (formerly Max-Planck-Institut für Strömungsforschung), Bunsenstr. 10, D37073 Göttingen, Deutschland
*
Email address for correspondence: [email protected]

Abstract

Since insight into entropy generation is a key to increasing efficiency and thereby reducing fuel consumption and/or waste and – for wall-bounded flows – most entropy is generated in the viscous layer, we examine the transient behaviour of its dominant contributor there for a non-canonical flow. New measurements in oil flow are presented for the effects of favourable streamwise mean pressure gradients on temporal entropy generation rates and, in the process, on key Reynolds-stress-producing events such as sweep front passage and on the deceleration/outflow phase of the overall bursting process. Two extremes have been considered: (1) a high pressure gradient, nearing ‘laminarization’, and (2), for comparison, a low pressure gradient corresponding to many earlier experiments. In both cases, the peak temporal entropy generation rate occurs shortly after passage of the ejection/sweep interface. Whether sweep and ejection rates appear to decrease or increase with the pressure gradient depends on the feature examined and the manner of sampling. When compared using wall coordinates for velocities, distances and time, the trends and magnitudes of the transient behaviours are mostly the same. The main effects of the higher pressure gradient are (a) changes in the time lag between detections – representing modification of the shape of the sweep front and the sweep angle with the wall, (b) modification of the magnitude of an instantaneous Reynolds shear stress with wall distance and (c) enlarging the sweeps and ejections. Results, new for both low and high pressure gradients, are the temporal behaviours of the dominant contribution to entropy generation; it is found to be much more sensitive to distance from the wall than to streamwise pressure gradient.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, R. J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 041301.CrossRefGoogle Scholar
Andreopoulos, J. & Agui, J. H. 1996 Wall-vorticity flux dynamics in a two-dimensional turbulent boundary layer. J. Fluid Mech. 309, 4584.CrossRefGoogle Scholar
Antonia, R. A., Kim, J. & Browne, L. W. B. 1991 Some characteristics of small-scale turbulence in a turbulent duct flow. J. Fluid Mech. 233, 369388.CrossRefGoogle Scholar
Aubertine, C. D. & Eaton, J. K. 2005 Turbulence development in a non-equilibrium turbulent boundary layer with mild adverse pressure gradient. J. Fluid Mech. 532, 345364.CrossRefGoogle Scholar
Bejan, A. 1982 Entropy Generation Through Heat and Fluid Flow. Wiley.Google Scholar
Bernard, P. S. & Wallace, J. M. 2002 Turbulent Flow. Analysis, Measurement and Prediction. Wiley.Google Scholar
Blackwelder, R. F. & Haritonidis, J. H. 1983 Scaling of the bursting frequency in turbulent boundary layers. J. Fluid Mech. 132, 87103.CrossRefGoogle Scholar
Blackwelder, R. F. & Kaplan, R. E. 1976 On the wall structure of the turbulent boundary layer. J. Fluid Mech. 76, 86112.CrossRefGoogle Scholar
Bradshaw, P. 1975 An Introduction to Turbulence and its Measurement, 2nd ed. Pergamon.Google Scholar
Brodkey, R. S., Aouad, Y. G., Valizadeh-Alavi, H. & Eckelmann, H. 1985 Refinement of pattern recognition of coherent structures in turbulent shear flows and a comparison between detection techniques. Lec. Notes Phys. 235, 279291.CrossRefGoogle Scholar
Brodkey, R. S., Taraba, J. L., Nychas, S. G. & Wallace, J. M. 1974 a Reply to comments by P. Bradshaw. Phys. Fluids 17, 2150.CrossRefGoogle Scholar
Brodkey, R. S., Wallace, J. M. & Eckelmann, H. 1974 b Some properties of truncated turbulence signals in bounded shear flows. J. Fluid Mech. 63, 209224.CrossRefGoogle Scholar
Chambers, F. W., Murphy, H. D. & McEligot, D. M. 1983 Laterally converging flow. Part 2. Temporal wall shear stress. J. Fluid Mech. 127, 403428.CrossRefGoogle Scholar
Clausius, R. 1887 Die mechanische Wärmetheorie. Vieweg.Google Scholar
Corino, E. R. & Brodkey, R. S. 1969 A visual observation of the wall region in turbulent flow. J. Fluid Mech. 37, 130.CrossRefGoogle Scholar
Diorio, J., Kelley, D. H. & Wallace, J. M. 2007 The spatial relationships between dissipation and production rates and vortical structures in turbulent boundary layers and mixing layers. Phys. Fluids 19 (3), 035101-1–035101-8.CrossRefGoogle Scholar
Eckelmann, H. 1970 Experimentelle Untersuchungen in einer turbulenten Kanalströmung mit starken viskosen Wandschichten. Dissertation, Georg August Universität, Göttingen.Google Scholar
Eckelmann, H. 1974 The structure of the viscous sublayer and the adjacent wall region in a turbulent channel flow. J. Fluid Mech. 65, 439459.CrossRefGoogle Scholar
Eckelmann, H., Nychas, S. G., Brodkey, R. S. & Wallace, J. M. 1977 Vorticity and turbulence production in pattern recognized turbulent flow structures. Phys. Fluids Suppl. 20, S225S231.CrossRefGoogle Scholar
Eckelmann, H. & Randolph, M. 1993 Measurements of spatial velocity gradients in a turbulent channel flow. In Some New Trends on Fluid Mechanics and Theoretical Physics (ed. Lin, C. C. & Hu, N.), pp. 358361. Peking University Press (Conference was held in 1992).Google Scholar
Eckelmann, H. & Wallace, J. M. 1981 A comparison of characteristic features of coherent turbulent structures found using the Variable Interval Time Average (VITA) technique and using the pattern recognition technique. Lec. Notes Phys. 136, 292303.CrossRefGoogle Scholar
Finnicum, D. S. & Hanratty, T. J. 1988 Effect of favourable pressure gradients on turbulent boundary layers. AIChE J. 34, 529540.CrossRefGoogle Scholar
Gersten, K. & Herwig, H. 1992 Strömungsmechanik. Vieweg.CrossRefGoogle Scholar
Hradisky, M., Hauser, T., Richards, A. & Spall, R. 2006 Large eddy simulation of strongly heated internal gas flows. AIAA Paper, 2006-3260.Google Scholar
Huffman, G. D. & Bradshaw, P. 1972 A note on von Kármán's constant in low Reynolds number turbulent flows. J. Fluid Mech. 53, 4560.CrossRefGoogle Scholar
Jacobs, R. G. & Durbin, P. A. 2001 Simulations of bypass transition. J. Fluid Mech. 428, 185212.CrossRefGoogle Scholar
Johansson, A. V., Alfredsson, P. H. & Eckelmann, H. 1987 On the evolution of shear-layer structures in near-wall turbulence. Advances in Turbulence (ed. Comte-Bellot, G. & Mathieu, J.). Springer.Google Scholar
Johansson, A. V., Alfredsson, P. H. & Kim, J. 1991 Evolution and dynamics of shear-layer structures in near-wall turbulence. J. Fluid Mech. 224, 579599.CrossRefGoogle Scholar
Jones, W. P. & Launder, B. E. 1972 The prediction of laminarization with a two-equation model of turbulence. Intl J. Heat Mass Transfer 15, 301314.CrossRefGoogle Scholar
Kays, W. M. 1966 Convective Heat and Mass Transfer. McGraw-Hill.Google Scholar
Kendall, J. M. 1998 Experiments on boundary layer receptivity to free-stream turbulence. AIAA Paper 98-0530.CrossRefGoogle Scholar
Kestin, J. 1980 Availability: the concept and associated terminology. Energy Intl J. 5, 679692.CrossRefGoogle Scholar
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Rundstadler, P. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30, 741773.CrossRefGoogle Scholar
Kock, F. & Herwig, H. 2004 Local entropy production in turbulent shear flows: a high-Reynolds number model with wall functions. Intl J. Heat Mass Transfer 47, 22052215.CrossRefGoogle Scholar
Kreplin, H.-P. & Eckelmann, H. 1979 Propagation of perturbations in the viscous sublayer and adjacent wall region. J. Fluid Mech. 95, 305322.CrossRefGoogle Scholar
Krogstad, P.-A. & Skare, P. E. 1995 Influence of a strong adverse pressure gradient on the turbulent structure in a boundary layer. Phys. Fluids 7, 20142024.CrossRefGoogle Scholar
Landahl, M. T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98, 243251.CrossRefGoogle Scholar
Launder, B. E. 1963 The turbulent boundary layer in a strongly negative pressure gradient. Master's thesis, MIT. Also MIT Gas Turbine Lab. Rpt. 71.Google Scholar
Liepmann, H. W. 1943 Investigations on laminar boundary-layer stability and transition on curved boundaries. NACA Wartime Report W-107, ACR No. 3H30.Google Scholar
Lu, S. S. & Willmarth, W. W. 1973 Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J. Fluid Mech. 60, 481511.CrossRefGoogle Scholar
McEligot, D. M., Brodkey, R. S. & Eckelmann, H. 2008 Entropy generation in the viscous layers of laterally-converging duct flows. Technical Report INL/EXT-08-14979, Idaho National Laboratory, December. Available from the Information Bridge of the DoE Office of Scientific and Technical Information (www.osti.gov/bridge).Google Scholar
McEligot, D. M. & Eckelmann, H. 2003 Effects of laterally converging flows on mean turbulence structure in the viscous layer. Technical Report INEEL/EXT-2002-697, Idaho National Engineering and Environmental Laboratory.Google Scholar
McEligot, D. M. & Eckelmann, H. 2006 Laterally converging duct flows. Part 3. Mean turbulence structure in the viscous layer. J. Fluid Mech. 549, 2559.CrossRefGoogle Scholar
McEligot, D. M., Nolan, K. P., Walsh, E. J. & Laurien, E. 2008 a Effects of pressure gradients on entropy generation in the viscous layers of turbulent wall flows. Intl J. Heat Mass Transfer 51, 11041114.CrossRefGoogle Scholar
McEligot, D. M., Ormand, L. W. & Perkins, H. C. 1966 Internal low Reynolds number turbulent and transitional gas flow with heat transfer. J. Heat Transfer 88, 239245.CrossRefGoogle Scholar
McEligot, D. M., Walsh, E. J., Laurien, E. & Spalart, P. R. 2008 b Entropy generation in the viscous parts of a turbulent boundary layer. J. Fluids Engr 130, 061205-1–061205-12.CrossRefGoogle Scholar
McKeon, B. J., Li, J., Jiang, W., Morrison, J. F. & Smits, A. J. 2004 Further observations on the mean velocity distribution in fully developed pipe flow. J. Fluid Mech. 501, 135147.CrossRefGoogle Scholar
Morrison, J. F., Subramanian, C. S. & Bradshaw, P. 1992 Bursts and the law of the wall in turbulent boundary layers. J. Fluid Mech. 241, 75108.CrossRefGoogle Scholar
Morrison, J. F., Tsai, H. M. & Bradshaw, P. 1989 Conditional-sampling schemes for turbulent flow, based on the variable-interval time averaging (VITA) algorithm. Exp. Fluids 7, 173189.CrossRefGoogle Scholar
Morrison, J. F. & Westbury, P. S. 1996 Perspectives on wall turbulence: the use of complementary techniques. Exp. Thermal and Fluid Sci. 13, 211222.CrossRefGoogle Scholar
Murphy, H. D., Chambers, F. W. & McEligot, D. M. 1983 Laterally converging flow. Part 1. Mean flow. J. Fluid Mech. 127, 379401.CrossRefGoogle Scholar
Narasimha, R. & Sreenivasan, K. R. 1979 Relaminarization of fluid flows. Adv. Appl. Mech. 19, 221309.CrossRefGoogle Scholar
Nychas, S. G., Hershey, H. C. & Brodkey, R. S. 1973 A visual study of turbulent shear flow. J. Fluid Mech. 61, 513540CrossRefGoogle Scholar
Panton, R. L. (Ed.) 1997 Self-Sustaining Mechanisms of Wall Turbulence. Computational Mechanics Pubs.Google Scholar
Panton, R. L. 2001 Overview of the self-sustaining mechanisms of wall turbulence. Prog. Aero. Sci. 37, 341383.CrossRefGoogle Scholar
Parneix, S., Durbin, P. & Behnia, M. 1998 Computation of three-dimensional turbulent boundary layers using the v 2f model. Flow Turbul. Comb. 10, 1946.CrossRefGoogle Scholar
Patel, V. C. 1965 Calibration of the Preston tube and limitations on its use in pressure gradients. J. Fluid Mech. 23, 185208.CrossRefGoogle Scholar
Randolph, M., Eckelmann, H. & Nychas, S. G. 1987 Identification of sweeps with the help of the instantaneous velocity gradient dU/dy. Advances in Turbulence, pp. 408415. Springer.CrossRefGoogle Scholar
Reynolds, H. C. 1968 Internal low Reynolds number turbulent heat transfer. PhD thesis, Aero. Mech. Engr., Univ. Arizona. Also DDC AD 669 254.Google Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.CrossRefGoogle Scholar
Rotta, J. C. 1962 Turbulent boundary layers in incompressible flow. Progress in Aeronautical Sciences, vol. 2, pp. 1219, Pergamon Press.Google Scholar
Schlichting, H. 1982 Grenzschicht-Theorie, Achte Auflage. G. Braun.Google Scholar
Senecal, V. E. 1952 Fluid flow in the transition zone. PhD thesis, Carnegie Inst. Tech.Google Scholar
Spalart, P. R. 1986 Numerical study of sink-flow boundary layers. J. Fluid Mech. 172, 307328.CrossRefGoogle Scholar
Spalart, P. R. 1988 Direct simulation of a turbulent boundary layer up to Re θ = 1410. J. Fluid Mech. 187, 6198.CrossRefGoogle Scholar
Wallace, J. M. & Brodkey, R. S. 1977 Reynolds stress and joint probability density distributions in the uv plane of a turbulent channel flow. Phys. Fluids 20, 351355.CrossRefGoogle Scholar
Wallace, J. M., Brodkey, R. S. & Eckelmann, H. 1977 Pattern-recognized structures in bounded turbulent shear flows. J. Fluid Mech. 83, 673693.CrossRefGoogle Scholar
Wallace, J. M., Eckelmann, H. & Brodkey, R. S. 1972 The wall region in turbulent shear flows. J. Fluid Mech. 54, 3948.CrossRefGoogle Scholar
Wilhelm, D., Härtel, C. & Eckelmann, H. 1998 On the relation between fronts and high-shear layers in wall turbulence. Flow Turbul. Comb. 60, 87103.CrossRefGoogle Scholar
Wundrow, D. W. & Goldstein, M. E. 2001 Effect on a laminar boundary layer of small-scale streamwise vorticity in the upstream flow. J. Fluid Mech. 426, 229262.CrossRefGoogle Scholar
Xu, X., Lee, J. S., Pletcher, R. H., Shehata, A. M. & McEligot, D. M. 2004 Large eddy simulation of turbulent forced gas flows in vertical pipes with high heat transfer rates. Intl J. Heat Mass Transfer 47, 41134123.CrossRefGoogle Scholar