Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T16:30:47.629Z Has data issue: false hasContentIssue false

Large-scale structural effects in developed turbulent flow through closely-spaced rod arrays

Published online by Cambridge University Press:  20 April 2006

J. D. Hooper
Affiliation:
CSIRO, Division of Mineral Physics, Lucas Heights Research Establishment, Private Mail Bag 7, P.O. Sutherland, NSW 2232, Australia
K. Rehme
Affiliation:
Institut für Neutronenphysik und Reaktortechnik, Kernforschungszentrum Karlsruhe, Postfach 3640, D7500 Karlsruhe 1, W. Germany

Abstract

Axial and azimuthal turbulence intensities in the rod-gap region are shown, for developed turbulent flow through parallel rod arrays, to increase strongly with decreasing rod spacing. Two array geometries are reported: one was constructed from a rectangular cross-section duct containing four rods and spaced at five pitch-to-diameter or wall-to-diameter ratios; the second was a test section containing six rods set in a regular square-pitch array to represent the interior flow region of a large array.

Measurements were made of the mean axial velocity, wall-shear-stress variation, axial-pressure distribution and Reynolds stresses. Techniques for resolving secondary-flow velocities to within ±1% of the local axial velocity failed to detect significant non-zero mean secondary-flow components. Analysis of the turbulent flow structure showed an energetic azimuthal turbulent-velocity component in the open rod gap for both geometries. The axial turbulent velocity has a coupled large-scale semiperiodic structure, with an antiphase relationship across the rod-gap centre or subchannel boundary. This structure is considered to be generated by an incompressible-flow parallel-channel instability, and, for closely spaced rod arrays, is the dominant process for intersubchannel mass, heat or momentum exchange.

Type
Research Article
Copyright
© 1984 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aly, A. M. M., Trupp, A. C. & Gerrard, A. D. 1978 J. Fluid Mech. 85, 57.
Brundrett, E. & Baines, W. 1964 J. Fluid Mech. 19, 375.
Bruun, H. 1976 J. Fluid Mech. 76, 145.
Carajilescov, P. & Todreas, N. E. 1976 Trans. ASME C: J. Heat Transfer 98, 262.
Champagne, F. H. & Sleicher, C. A. 1967 J. Fluid Mech. 28, 177.
Eifler, W. & Kijsing, R. 1973 Rep. EUR-4950 e.
Albraith, K. P. & Knudsen, I. G. 1972 Am. Inst. Chem. Engng 68, 90.
Gessner, F. B. 1973 J. Fluid Mech. 58, 1.
Haque, M. A., Hassan, A. K. A., Turner, J. T. & Barrow, H. 1983 Wärme und Stoffübertragung 17, 93.
Hooper, J. D. 1980a Fully developed turbulent flow through a rod cluster. Ph.D. thesis, University of N.S.W.
Hooper, J. D. 1980b Nucl. Engng Des. 60, 365.
Hooper, J. D. 1983 In Proc. 4th Symp. Turbulent Shear Flows, Karlsruhe.
Hooper, J. D., Wood, D. H. & Crawford, W. J. 1983 AAEC Rep. E558.
Hooper, J. D. & Rehme, K. 1983 KfK Rep. 3467.
Kjellström, B. 1974 AB Atomenergi Rep. A.E.-487.
Laufer, J. 1954 NACA Rep. 1174.
Launder, B. E. & Ying, Y. M. 1972 J. Fluid Mech. 54, 289.
Lawn, C. J. 1971 J. Fluid Mech. 48, 477.
Melling, A. & Whitelaw, J. H. 1976 J. Fluid Mech. 78, 289.
Patel, V. C. 1965 J. Fluid Mech. 23, 185.
Perkins, H. J. 1970 J. Fluid Mech. 44, 721.
Rehme, K. 1977 KfK Rep. 2441 [English Transl. W.H. Trans. 404 (1977)].
Rehme, K. 1978a KfK Rep. 2611.
Rehme, K. 1978b KfK Rep. 2631.
Rehme, K. 1980a KfK Rep. 2983.
Rehme, K. 1980b KfK Rep. 3047.
Rehme, K. 1980c KfK Rep. 3069.
Rehme, K. 1981 IAHR Conf. Paper, MIT.
Rehme, K. 1982a KfK Rep. 3318.
Rehme, K. 1982b KfK Rep. 3324.
Rehme, K. 1982c KfK Rep. 3361.
Rehme, K. 1982d Nucl. Technol. 59, 148.
Rowe, D. S. 1973 BNWL Rep. 1736.
Seale, W. J. 1979 Nucl. Engng Des. 54, 183.
Seale, W. J. 1982 J. Fluid Mech. 123, 399.
Trupp, A. C. & Azad, R. S. 1975 Nucl. Engng Des. 32, 47.
Wood, D. H. 1981 Univ. Newcastle (Australia) Rep. TN-FM61.
Wood, D. H. & Hooper, J. D. 1984 Nucl. Engng Des. (to appear).