Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-18T18:02:28.641Z Has data issue: false hasContentIssue false

Large-scale motion in the intermittent region of a turbulent boundary layer

Published online by Cambridge University Press:  29 March 2006

Leslie S. G. Kovasznay
Affiliation:
Department of Mechanics, The Johns Hopkins University
Valdis Kibens
Affiliation:
Department of Mechanics, The Johns Hopkins University Present address: Department of Aerospace Engineering, University of Michigan.
Ron F. Blackwelder
Affiliation:
Department of Mechanics, The Johns Hopkins University

Abstract

The outer intermittent region of a fully developed turbulent boundary layer with zero pressure gradient was extensively explored in the hope of shedding some light on the shape and motion of the interface separating the turbulent and non-turbulent regions as well as on the nature of the related large-scale eddies within the turbulent regime. Novel measuring techniques were devised, such as conditional sampling and conditional averaging, and others were turned to new uses, such as reorganizing in map form the space-time auto- and cross-correlation data involving both the U and V velocity components as well as I, the intermittency function. On the basis of the new experimental results, a conceptual model for the development of the interface and for the entrainment of new fluid is proposed.

Type
Research Article
Copyright
© 1970 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bradbury, L. J. S. 1965 J. Fluid Mech. 23, 31.
Bradshaw, P. 1967 J. Fluid Mech. 27, 209.
Clauser, F. H. 1954 J. Aero. Sci. 21, 91.
Corrsin, S. 1943 NACA Wartime Rep. W-94.
Corrsin, S. & Kistler, A. L. 1955 NACA Rep. 1244.
Favre, A., Gaviglio, J. & Dumas, R. 1957 J. Fluid Mech. 2, 313.
Favre, A., Gaviglio, J. & Dumas, R. 1958 J. Fluid Mech. 3, 344.
Favre, A., Gaviglio, J. & Dumas, R. 1967 Phys. Fluids, 10, S 138.
Fiedler, H. & Head, H. R. 1966 J. Fluid Mech. 25, 719.
Imaki, K. 1968 Bull. Inst. Space and Aero. Sci., University of Tokyo, Part I 4, 448; Part II 4, 536 (in Japanese only).
Kaplan, R. E. & Laufer, J. 1968 Proc. 12th Int. Congress Mech. (to be published).
Kibens, V. 1968 Ph.D. dissertation, The Johns Hopkins University.
Kistler, A. L. 1952 M.S. Thesis, The Johns Hopkins University.
Klebanoff, P. S. 1954 NACA Rep. 1247.
Kline, S. J., Reynolds, W. C., Schraub, R. A. & Rundstadler, P. W. 1967 J. Fluid Mech. 30, 747.
Kovasznay, L. S. G. 1954 Turbulence measurements. High Speed Aerodynamics and Jet Propulsion, 10, 227. Princeton University Press.
Kovasznay, L. S. G., Komoda, H. & Vasudeva, B. R. 1962 Proc. Heat. Transf. and Fluid Mech. Inst. Stanford University Press.
Kovasznay, L. S. G., Miller, L. T. & Vasudeva, B. R. 1963 Project SQUID Tech. Rep. JHU-22-P.
Kovasznay, L. S. G. & Chevray, R. 1969 Rev. Sci. Instr. 40, 91.
Liepmann, H. W. 1954 GALCIT/NACA Rep. NAW-6288.
Nee, V. W. & Kovasznay, L. S. G. 1969 Phys. Fluids, 12, 473.
Phillips, O. M. 1955 Proc. Camb. Phil. Soc. 51, 220.
Rice, O. 1944 Bell Syst. Tech. J. 23, 282.
Rice, O. 1945 Bell Syst. Tech. J. 24, 46.
Roshko, A. 1953 NACA TN 2913.
Stewart, R. W. 1956 J. Fluid Mech. 1, 593.
Townsend, A. A. 1949 Austr. J. Sci. Res. Ser. A 2, 451.
Townsend, A. A. 1966 J. Fluid Mech. 26, 689.
Tritton, D. J. 1959 J. Fluid Mech. 6, 547.
Tritton, D. J. 1967 J. Fluid Mech. 28, 439.