Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T00:35:12.248Z Has data issue: false hasContentIssue false

A large-scale investigation of wind reversal in a square Rayleigh–Bénard cell

Published online by Cambridge University Press:  02 February 2015

Bérengère Podvin*
Affiliation:
LIMSI-CNRS, rue Von Neuman, Orsay, 91403 CEDEX, France
Anne Sergent
Affiliation:
LIMSI-CNRS, rue Von Neuman, Orsay, 91403 CEDEX, France Université Pierre et Marie Curie – Paris 6, 4 place Jussieu, 75252 CEDEX 05, Paris, France
*
Email address for correspondence: [email protected]

Abstract

We consider the numerical simulation of Rayleigh–Bénard convection in a 2D square cell filled with water ( $\mathit{Pr}=4.3$ ) at a turbulent Rayleigh number of $\mathit{Ra}=5\times 10^{7}$ . We focus on the structures and dynamics of the large-scale intermittent flow. Two quasi-stable flow patterns are identified: one consists of a main diagonal roll with two corner rolls; and the other of two horizontally stacked rolls. These stable flow structures are associated with two types of events, which involve corner flow growth and pattern rotation: reversals, when the main roll rapidly switches signs; and cessations, when it disappears for longer periods. Proper orthogonal decomposition (POD) is applied independently to the velocity field and to the temperature field. In both cases, three principal modes were identified: a single-roll, large-scale circulation; a quadrupolar flow; and a double-roll, symmetry-breaking mode. The large-scale circulation is the kinetic mode with the highest energy. The most energetic temperature mode is associated with the mean temperature and corresponds to a velocity field of quadrupolar nature. The vertical heat flux is concentrated in these two modes. The reversal process is characterized by sharp fluctuations in the amplitudes of all modes. Analysis of the interaction coefficients between the spatial modes leads us to propose a three-dimensional model, based on the interaction of the large-scale circulation, the quadrupolar flow and horizontal rolls. The main dynamics and time scales of reversals and cessations are reproduced by the model in the presence of noise.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araujo, F., Grossmann, S. & Lohse, D. 2005 Wind reversals in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 95, 084502.Google Scholar
Armbruster, D., Guckenheimer, J. & Holmes, P. 1988 Heteroclinic cycles and modulated travelling waves in systems with $\text{O}_{2}$ symmetry. Physica D 29, 257282.CrossRefGoogle Scholar
Aubry, N., Holmes, P., Lumley, J. L. & Stone, E. 1988 The dynamics of coherent structures in the wall region of the wall boundary layer. J. Fluid Mech. 192, 115173.Google Scholar
Bailon-Cuba, J., Emran, M. S. & Schumacher, J. 2010 Aspect ratio dependence of heat transfer and large-scale flow in turbulent convection. J. Fluid Mech. 655, 152173.Google Scholar
Balajewicz, M., Dowell, E. H. & Noack, B. 2013 Low-dimensional modelling of high-Reynolds-number shear flow incorporating constraints from the Navier–Stokes equations. J. Fluid Mech. 729, 285308.CrossRefGoogle Scholar
Benzi, R. 2005 Flow reversal in a simple model of turbulence. Phys. Rev. Lett. 95, 024502.Google Scholar
Benzi, R. & Verzicco, R. 2008 Numerical simulations of flow reversal in Rayleigh–Bénard convection. Eur. Phys. Lett. J. 81, 64008.Google Scholar
Boree, J. 2003 Extended proper orthogonal decomposition: a tool to analyse correlated events in turbulent flows. Exp. Fluids 35, 188192.Google Scholar
Brown, E. & Ahlers, G. 2007 Large-scale circulation model for turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 98, 134501.Google Scholar
Brown, E., Nikolaenko, A. & Ahlers, G. 2005 Reorientation of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 95, 084503.Google Scholar
Chandra, M. & Verma, M. K. 2011 Dynamics and symmetries of flow reversals in turbulent convection. Phys. Rev. E 83, 067303.Google Scholar
Chandra, M. & Verma, M. K. 2013 Flow reversals in turbulent convection via vortex reconnections. Phys. Rev. Lett. 110, 114503.Google Scholar
Choi, S. O. & Kim, S. K. 2012 Turbulent modeling of natural convection in enclosures: a review. J. Mech. Sci. Technol. 26 (1), 283297.Google Scholar
Deane, A. E. & Sirovich, L. 1991 A computational study of Rayleigh–Bénard convection. Part 1. Rayleigh-number scaling. J. Fluid Mech. 222, 231250.Google Scholar
Gallet, B., Hérault, J., Laroche, C., Pétrélis, F. & Fauve, S. 2012 Reversals of a large-scale field generated over a turbulent background. Geophys. Astrophys. Fluid Dyn. 106, 468492.CrossRefGoogle Scholar
Gissinger, C., Dormy, E. & Fauve, S. 2010 Morphology of field reversals in turbulent dynamos. Europhys. Lett. 90, 49001.Google Scholar
Holmes, P., Lumley, J. L. & Berkooz, G. 1996 Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press.CrossRefGoogle Scholar
Ince, N. Z. & Launder, B. E. 1989 On the computation of buoyancy-driven turbulent flows in rectangular enclosures. Intl J. Heat Fluid Flow 10 (89), 110117.CrossRefGoogle Scholar
Jing, C.-J., Henry, D., Hadid, H. B. & Imaishi, N. 2003 Low-order dynamical model for low-Prandtl number fluid flow in a laterally heated cavity. Phys. Fluids 15, 21522163.Google Scholar
Krishnamurti, R. & Howard, L. N. 1981 Large-scale flow generation in turbulent convection. Proc. Natl Acad. Sci. USA 19811985.CrossRefGoogle ScholarPubMed
Lumley, J. L. & Poje, A. 1997 Low-dimensional models for flows with density fluctuations. Phys. Fluids 9 (7), 20232031.Google Scholar
Molenaar, D., Clercx, H. J. H. & van Heijst, G. J. F. C. 2004 Angular momentum of forced 2D turbulence in a square no-slip domain. Physica D 196, 329340.Google Scholar
Niemela, J. J., Skrkbek, L., Streenivasan, K. R. & Donelly, R. J. 2001 The wind in confined Rayleigh–Bénard convection. J. Fluid Mech. 449, 169178.CrossRefGoogle Scholar
Osth, J., Noack, B., Krajnoci, S., Borée, J. & Barros, D. 2014 On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high Reynolds number flow over an ahmed body. J. Fluid Mech. 474, 518544.Google Scholar
Petschel, K., Wilczek, M., Breuer, M., Fredrich, R. & Hansen, U. 2011 Statistical analysis of global wind dynamics in vigorous Rayleigh–Bénard convection. Phys. Rev. E 85, 026309.Google Scholar
Podvin, B. & Lumley, J. L. 1998 A low-dimensional approach for the minimal flow unit. J. Fluid Mech. 362, 121155.Google Scholar
Podvin, B. & Le Quéré, P. L. 2001 Low-order P.O.D-based models for the flow in a differentially heated cavity. Phys. Fluids 13, 32043214.Google Scholar
Podvin, B. & Sergent, A. 2012 Proper orthogonal decomposition investigation of turbulent Rayleigh–Bénard convection in a rectangular cavity. Phys. Fluids 24 (10), 105106.CrossRefGoogle Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures part I: coherent structures. Q. Appl. Maths 45 (3), 561571.Google Scholar
Sirovich, L. & Park, H. 1990 Turbulent thermal convection in a finite domain: part 1. Theory. Phys. Fluids A 2 (9), 16491658.Google Scholar
Smith, T. R., Moehlis, J. & Holmes, P. 2005 Low-dimensional models for turbulent plane couette flow in a minimal flow unit. J. Fluid Mech. 538, 71110.CrossRefGoogle Scholar
Sreenivasan, L., Berdshadskii, A. & Niemelak, J. J. 2002 Mean wind and its reversal in thermal convection. Phys. Rev. E 65 (5), 056306.CrossRefGoogle ScholarPubMed
Stone, E. & Holmes, P. J. 1989 Noise induced intermittency in a model of a turbulent boundary layer. Physica D 37, 2032.Google Scholar
Sugiyama, K., Ni, R., Stevens, R. J. A. M., Chan, T. S., Zhou, S.-Q., Xi, H.-D., Sun, C., Grossmann, S., Xia, K.-Q. & Lohse, D. 2010 Flow reversals in thermally driven turbulence. Phys. Rev. Lett. 105, 034503.Google Scholar
Xi, H. D. & Xia, K. Q. 2008 Flow mode transition in turbulent thermal convection. Phys. Fluids 20, 055104.CrossRefGoogle Scholar
Xin, S., Chergui, J. & Le Quéré, P. L.2008 3D spectral parallel multi-domain computing for natural convection flows. In Proceedings of Parallel CFD, Paris.Google Scholar