Published online by Cambridge University Press: 13 March 2013
We performed large-eddy simulations of flow over a series of three-dimensional dunes at laboratory scale (Reynolds number based on the average channel depth and streamwise velocity was 18 900) using the Lagrangian dynamic eddy-viscosity subgrid-scale model. The bedform three-dimensionality was imposed by shifting a standard two-dimensional dune shape in the streamwise direction according to a sine wave. The statistics of the flow are discussed in 10 cases with in-phase and staggered crestlines, different deformation amplitudes and wavelengths. The results are validated qualitatively against experiments. The three-dimensional separation of flow at the crestline alters the distribution of wall pressure, which in turn may cause secondary flow across the stream, which directs low-momentum fluid, near the bed, toward the lobe (the most downstream point on the crestline) and high-momentum fluid, near the top surface, toward the saddle (the most upstream point on the crestline). The mean flow is characterized by a pair of counter-rotating streamwise vortices, with core radius of the order of the flow depth. However, for wavelengths smaller than the flow depth, the secondary flow exists only near the bed and the mean flow away from the bed resembles the two-dimensional case. Staggering the crestlines alters the secondary motion; the fastest flow occurs between the lobe and the saddle planes, and two pairs of streamwise vortices appear (a strong one, centred about the lobe, and a weaker one, coming from the previous dune, centred around the saddle). The distribution of the wall stress and the focal points of separation and attachment on the bed are discussed. The sensitivity of the average reattachment length, depends on the induced secondary flow, the streamwise and spanwise components of the channel resistance (the skin friction and the form drag), and the contribution of the form drag to the total resistance are also studied. Three-dimensionality of the bed increases the drag in the channel; the form drag contributes more than in the two-dimensional case to the resistance, except for the staggered-crest case. Turbulent-kinetic energy is increased in the separated shear layer by the introduction of three-dimensionality, but its value normalized by the plane-averaged wall stress is lower than in the corresponding two-dimensional dunes. The upward flow on the stoss side and higher deceleration of flow on the lee side over the lobe plane lift and broaden the separated shear layer, respectively, affecting the turbulent kinetic energy.