Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T15:44:04.514Z Has data issue: false hasContentIssue false

Large-eddy simulation of mixing in a recirculating shear flow

Published online by Cambridge University Press:  08 March 2010

GEORGIOS MATHEOU*
Affiliation:
Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
ARISTIDES M. BONANOS
Affiliation:
Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
CARLOS PANTANO
Affiliation:
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
PAUL E. DIMOTAKIS
Affiliation:
Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
*
Email address for correspondence: [email protected]

Abstract

The flow field and mixing in an expansion-ramp geometry is studied using large-eddy simulation (LES) with subgrid scale (SGS) modelling. The expansion-ramp geometry was developed to investigate enhanced mixing and flameholding characteristics while maintaining low total-pressure losses. Passive mixing was considered without taking into account the effects of chemical reactions and heat release, an approximation that is adequate for experiments conducted in parallel. The primary objective of the current work is to validate the LES–SGS closure in the case of passive turbulent mixing in a complex configuration and, if successful, to rely on numerical simulation results for flow details unavailable via experiment. Total (resolved-scale plus subgrid contribution) probability density functions (p.d.f.s) of the mixture fraction are estimated using a presumed beta-distribution model for the subgrid field. Flow and mixing statistics are in good agreement with the experimental measurements, indicating that the mixing on a molecular scale is correctly predicted by the LES–SGS model. Finally, statistics are shown to be resolution-independent by computing the flow for three resolutions, at twice and four times the resolution of the coarsest simulation.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akselvoll, K. & Moin, P. 1996 Large-eddy simulation of turbulent confined coannular jets. J. Fluid Mech. 315, 387411.CrossRefGoogle Scholar
Andreopoulos, J. 1985 On the structure of jets in a crossflow. J. Fluid Mech. 157, 163197.CrossRefGoogle Scholar
Andreopoulos, J. & Rodi, W. 1984 Experimental investigation of jets in a crossflow. J. Fluid Mech. 138, 93127.CrossRefGoogle Scholar
Arienti, M., Hung, P., Morano, E. & Shepherd, J. E. 2003 A level set approach to Eulerian–Lagrangian coupling. J. Comput. Phys. 185 (1), 213251.CrossRefGoogle Scholar
Becker, H. A., Hottel, H. C. & Williams, G. C. 1967 Nozzle-fluid concentration field of round turbulent free jet. J. Fluid Mech. 30, 285303.CrossRefGoogle Scholar
Ben-Yakar, A., Mungal, M. G. & Hanson, R. K. 2006 Time evolution and mixing characteristics of hydrogen and ethylene transverse jets in supersonic crossflows. Phys. Fluids 18 (2), 026101:116.CrossRefGoogle Scholar
Bergthorson, J. M., Johnson, M. B., Bonanos, A. M., Slessor, M. D., Su, W.-J. & Dimotakis, P. E. 2009 Molecular mixing and flowfield measurements in a recirculating shear flow. Part I. Subsonic flow. Flow Turbul. Combust. 83 (2), 251268.CrossRefGoogle Scholar
Bilger, R. W. 1975 A note on Favre averaging in variable density flows. Combust. Sci. Technol. 11, 215217.CrossRefGoogle Scholar
Bilger, R. W. 1977 Comment on ‘Structure of turbulent shear flows: a new look’. AIAA J. 15 (7), 1056.CrossRefGoogle Scholar
Bonanos, A. M., Bergthorson, J. M. & Dimotakis, P. E. 2009 Molecular mixing and flowfield measurements in a recirculating shear flow. Part II. Supersonic flow. Flow Turbul. Combust. 83 (2), 269292.CrossRefGoogle Scholar
Bond, C. L. 1999 Reynolds number effects on mixing in the turbulent shear layer. PhD thesis, California Institute of Technology, http://resolver.caltech.edu/CaltechETD:etd-03242005-162912.Google Scholar
Brown, G. L. & Roshko, A. 1974 On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64, 775816.CrossRefGoogle Scholar
Bryan, G. H., Wyngaard, J. C. & Fritsch, J. M. 2003 Resolution requirements for the simulation of deep moist convection. Monthly Weather Review 131, 23942416.2.0.CO;2>CrossRefGoogle Scholar
Burton, G. C. 2008 a The nonlinear large-eddy simulation method applied to Sc ≈ 1 and Sc ≫ 1 passive-scalar mixing. Phys. Fluids 20 (3) 035103.CrossRefGoogle Scholar
Burton, G. C. 2008 b Scalar-energy spectra in simulations of Sc ≫ 1 mixing by turbulent jets using the nonlinear large-eddy simulation method. Phys. Fluids 20 (7) 071701.CrossRefGoogle Scholar
Callenaere, M., Franc, J. P., Michel, J. M. & Riondet, M. 2001 The cavitation instability induced by the development of a re-entrant jet. J. Fluid Mech. 444, 223256.CrossRefGoogle Scholar
Chow, F. K. & Moin, P. 2003 A further study of numerical errors in large-eddy simulations. J. Comput. Phys. 184 (2), 366380.CrossRefGoogle Scholar
Clemens, N. T. & Mungal, M. G. 1995 Large-scale structure and entrainment in the supersonic mixing layer. J. Fluid Mech. 284, 171216.CrossRefGoogle Scholar
Cook, A. W., Cabot, W. & Miller, P. L. 2004 The mixing transition in Rayleigh–Taylor instability. J. Fluid Mech. 511, 333362.CrossRefGoogle Scholar
Cook, A. W. & Riley, J. J. 1994 A subgrid model for equilibrium chemistry in turbulent flows. Phys. Fluids 6 (8), 28682870.CrossRefGoogle Scholar
Curran, E. T. 2001 Scramjet engines: the first forty years. J. Propul. Power 17 (6), 11381148.CrossRefGoogle Scholar
Curran, E. T. & Murthy, S. N. B. (Eds.) 2000 Scramjet Propulsion, Progress in Astronautics and Aeronautics, vol. 189. AIAA.Google Scholar
Deiterding, R. 2003 Parallel adaptive simulation of multi-dimensional detonation structures. PhD thesis, Brandenburgischen Technischen Universität Cottbus.Google Scholar
Deiterding, R. 2004 AMROC—Blockstructured adaptive mesh refinement in object-oriented C++. http://amroc.sourceforge.net.Google Scholar
Dimotakis, P. E. 1986 Two-dimensional shear-layer entrainment. AIAA J. 24, 17911796.CrossRefGoogle Scholar
Dimotakis, P. E. 1991 Turbulent free shear layer mixing and combustion. In High-Speed Propulsion Systems (ed. Murthy, S. N. B. & Curran, E. T.), Progress in Astronautics and Aeronautics, vol. 137, pp. 265340. AIAA.Google Scholar
Dimotakis, P. E. 2000 The mixing transition in turbulent flows. J. Fluid Mech. 409, 6998.CrossRefGoogle Scholar
Dimotakis, P. E. 2005 Turbulent mixing. Annu. Rev. Fluid Mech. 37, 329356.CrossRefGoogle Scholar
Dimotakis, P. E. & Brown, G. L. 1976 The mixing layer at high Reynolds number: large-structure dynamics and entrainment. J. Fluid Mech. 78, 535560.CrossRefGoogle Scholar
Dimotakis, P. E. & Hall, J. L. 1987 A simple model for finite chemical kinetics analysis of supersonic turbulent shear layer combustion. AIAA Paper 87-1879.CrossRefGoogle Scholar
Dimotakis, P. E. & Miller, P. L. 1990 Some consequences of the boundedness of scalar fluctuations. Phys. Fluids 2 (11), 19191920.CrossRefGoogle Scholar
Dowling, D. R. & Dimotakis, P. E. 1990 Similarity of the concentration field of gas-phase turbulent jets. J. Fluid Mech. 218, 109141.CrossRefGoogle Scholar
Eaton, J. K. & Johnston, J. P. 1981 A review of research on subsonic turbulent flow reattachment. AIAA J. 19 (9), 10931100.CrossRefGoogle Scholar
Fedkiw, R. P., Aslam, T., Merriman, B. & Osher, S. 1999 A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152 (2), 89112.CrossRefGoogle Scholar
Freund, J. B., Lele, S. K. & Moin, P. 2000 Compressibility effects in a turbulent annular mixing layer. Part 1. Turbulence and growth rate. J. Fluid Mech. 421, 229267.CrossRefGoogle Scholar
Gao, F. & O'Brien, E. E. 1993 A large-eddy simulation scheme for turbulent reacting flows. Phys. Fluids A 5 (6), 12821284.CrossRefGoogle Scholar
George, W. K. 1989 Self-preservation of turbulent flows and its relation to initial conditions and coherent structures. In Advances in Turbulence (ed. George, W. K. & Arndt, R.), pp. 3974. Hemisphere.Google Scholar
Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3 (7), 17601765.CrossRefGoogle Scholar
Ghosal, S. 1996 An analysis of numerical errors in large-eddy simulations of turbulence. J. Comput. Phys. 125, 187206.CrossRefGoogle Scholar
Ghosal, S. 1999 Mathematical and physical constraints on large-eddy simulation of turbulence. AIAA J. 37, 425433.CrossRefGoogle Scholar
Gottlieb, S., Shu, C. W. & Tadmor, E. 2001 Strong stability-preserving high-order time discretization methods. SIAM Rev. 43 (1), 89112.CrossRefGoogle Scholar
Hall, J. L. 1991 An experimental investigation of structure, mixing and combustion in compressible turbulent shear layers. PhD thesis, California Institute of Technology, http://resolver.caltech.edu/CaltechETD:etd-09232005-141544.Google Scholar
Hall, J. L., Dimotakis, P. E. & Roseman, H. 1991 Some measurements of molecular mixing in compressible turbulent shear layers. AIAA Paper 91-1719.Google Scholar
Harris, F.J. 1978 On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 66 (1), 5183.CrossRefGoogle Scholar
Hermanson, J. C. & Dimotakis, P. E. 1989 Effects of heat release in a turbulent, reacting shear layer. J. Fluid Mech. 199, 333375.CrossRefGoogle Scholar
Hill, D. J., Pantano, C. & Pullin, D. I. 2006 Large-eddy simulation and multiscale modelling of a Richtmer–Meshkov instability with reshock. J. Fluid Mech. 557, 2961.CrossRefGoogle Scholar
Hill, D. J. & Pullin, D. I. 2004 Hybrid tuned centre-difference-WENO method for large eddy simulations in the presence of strong shocks. J. Comput. Phys. 194 (2), 435450.CrossRefGoogle Scholar
Hollo, S. D., McDaniel, J. C. & Hartfield, R. J. Jr., 1994 Quantitative investigation of compressible mixing: staged transverse injection into Mach 2 flow. AIAA J. 32 (3), 528534.CrossRefGoogle Scholar
Honein, A. E. & Moin, P. 2004 Higher entropy conservation and numerical stability of compressible turbulence simulations. J. Comput. Phys. 201 (2), 531545.CrossRefGoogle Scholar
Island, T. C., Urban, W. D. & Mungal, M. G. 1996 Quantitative scalar measurements in compressible mixing layers. AIAA Paper 1996-0685.CrossRefGoogle Scholar
Jimènez, J., Liñan, A., Rogers, M. M. & Higuera, F. J. 1997 A priori testing of subgrid models for chemically reacting non-premixed turbulent shear flows. J. Fluid Mech. 349, 149171.CrossRefGoogle Scholar
Johnson, M. B. 2005 Aerodynamic control and mixing with ramp injection. Engineer's thesis, California Institute of Technology, http://resolver.caltech.edu/CaltechETD:etd-05262005-112117.Google Scholar
Kannepalli, C. & Piomelli, U. 2000 Large-eddy simulation of a three-dimensional shear-driven turbulent boundary layer. J. Fluid Mech. 423, 175203.CrossRefGoogle Scholar
Kerstein, A. R. 1988 A linear-eddy model of turbulent scalar transport and mixing. Combust. Sci. Technol. 60 (4), 391421.CrossRefGoogle Scholar
Knapp, R. T., Daily, J. W. & Hammitt, F. G. 1970 Cavitation. McGraw-Hill.Google Scholar
Konrad, J. H. 1976 An experimental investigation of mixing in two-dimensional turbulent shear flows with applications to diffusion-limited chemical reactions. PhD thesis, California Institute of Technology, http://resolver.caltech.edu/CaltechETD:etd-10132005-105700.Google Scholar
Koochesfahani, M. M. & Dimotakis, P. E. 1986 Mixing and chemical reactions in a turbulent liquid mixing layer. J. Fluid Mech. 170, 83112.CrossRefGoogle Scholar
Kosovic, B., Pullin, D. I. & Samtaney, R. 2002 Subgrid-scale modelling for large-eddy simulations of compressible turbulence. Phys. Fluids 14, 15111522.CrossRefGoogle Scholar
Le Ribault, C. 2008 Large eddy simulation of passive scalar in compressible mixing layers. Intl J. Heat Mass Transfer 51 (13–14), 35143524.CrossRefGoogle Scholar
Le Ribault, C., Sarkar, S. & Stanley, S. A. 2001 Large eddy simulation of evolution of a passive scalar in plane jet. AIAA J. 39 (8), 15091515.CrossRefGoogle Scholar
Leonard, A. 1974 Energy cascade in large-eddy simulations of turbulent fluid flows. Adv. Geophys. 18, 237248.CrossRefGoogle Scholar
Lesieur, M. & Metais, O. 1996 New trends in large-eddy simulations of turbulence. Annu. Rev. Fluid Mech. 28, 4582.CrossRefGoogle Scholar
Lundgren, T. S. 1982 Strained spiral vortex model for turbulent fine structure. Phys. Fluids 25, 21932203.CrossRefGoogle Scholar
Matheou, G., Pantano, C. & Dimotakis, P. E. 2008 Verification of a fluid-dynamics solver using correlations with linear stability results. J. Comput. Phys. 227 (11), 53855396.CrossRefGoogle Scholar
Meneveau, C. & Katz, J. 2000 Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech. 32, 132.CrossRefGoogle Scholar
Metais, O. & Lesieur, M. 1992 Spectral large-eddy simulation of isotropic and stably stratified turbulence. J. Fluid Mech. 239, 157194.CrossRefGoogle Scholar
Meyers, J., Geurts, B. J. & Baelmans, M. 2003 Database analysis of errors in large-eddy simulation. Phys. Fluids 15 (9), 27402755.CrossRefGoogle Scholar
Miller, P. L. & Dimotakis, P. E. 1996 Measurements of scalar power spectra in high Schmidt number turbulent jets. J. Fluid Mech. 308, 129146.CrossRefGoogle Scholar
Misra, A. & Pullin, D. I. 1997 A vortex-based subgrid stress model for large-eddy simulation. Phys. Fluids 9, 24432454.CrossRefGoogle Scholar
Moin, P., Squires, K., Cabot, W. & Lee, S. 1991 A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids A 7 (11), 27462757.CrossRefGoogle Scholar
Mungal, M. G. & Dimotakis, P. E. 1984 Mixing and combustion with low heat release in a turbulent shear layer. J. Fluid Mech. 148, 349382.CrossRefGoogle Scholar
Osher, S. & Sethian, J. 1988 Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79 (1), 1249.CrossRefGoogle Scholar
Pantano, C., Deiterding, R., Hill, D. J. & Pullin, D. I. 2007 A low-numerical dissipation patch-based adaptive mesh refinement method for large-eddy simulation of compressible flows. J. Comput. Phys. 221 (1), 6387.CrossRefGoogle Scholar
Pantano, C., Pullin, D. I., Dimotakis, P. E. & Matheou, G. 2008 LES approach for high Reynolds number wall-bounded flows with application to turbulent channel flow. J. Comput. Phys. 227 (21), 92719291.CrossRefGoogle Scholar
Papamoschou, D. & Roshko, A. 1988 The compressible turbulent shear layer: an experimental study. J. Fluid Mech. 197, 453477.CrossRefGoogle Scholar
Peters, N. 2000 Turbulent combustion. Cambridge University Press.CrossRefGoogle Scholar
Piacsek, S. A. & Williams, G. P. 1970 Conservation properties of convection difference schemes. J. Comput. Phys. 6, 392405.CrossRefGoogle Scholar
Pierce, C. D. & Moin, P. 1998 A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar. Phys. Fluids 10 (12), 30413044.CrossRefGoogle Scholar
Piomelli, U. 1999 Large-eddy simulation: achievements and challenges. Progr. Aero. Sci. 35 (4), 335362.CrossRefGoogle Scholar
Pitsch, H. 2006 Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38, 453482.CrossRefGoogle Scholar
Poinsot, T. J. & Lele, S. K. 1992 Boundary-conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101 (1), 104129.CrossRefGoogle Scholar
Pope, S. B. 2004 a Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6, 35.CrossRefGoogle Scholar
Pope, S. B. 2004 b Turbulent Flows. Cambridge University Press.Google Scholar
Pratte, R. D. & Baines, W. D. 1967 Profiles of the round turbulent jet in a crossflow. J. Hydraul. Div. Proc. ASCE 93 (6), 5364.Google Scholar
Pullin, D. I. 2000 A vortex-based model for the subgrid flux of a passive scalar. Phys. Fluids 12, 23112316.CrossRefGoogle Scholar
Pullin, D. I. & Lundgren, T. S. 2001 Axial motion and scalar transport in stretched spiral vortices. Phys. Fluids 13, 25532563.CrossRefGoogle Scholar
Pullin, D. I. & Saffman, P. G. 1994 Reynolds stresses and one-dimensional spectra for a vortex model of homogeneous anisotropic turbulence. Phys. Fluids 6, 17871796.CrossRefGoogle Scholar
Rai, M. M. 1986 A conservative treatment of zonal boundaries for Euler equation calculations. J. Comput. Phys. 62 (2), 472503.Google Scholar
Rossmann, T., Mungal, M. G. & Hanson, R. K. 2004 Mixing efficiency measurements using a modified cold chemistry technique. Exp. Fluids 37, 566576.CrossRefGoogle Scholar
Rudy, D. H. & Strikwerda, J. C. 1981 Boundary-conditions for subsonic compressible Navier–Stokes calculations. Comput. Fluids 9 (3), 327338.CrossRefGoogle Scholar
Sankaran, V. & Menon, S. 2005 LES of scalar mixing in supersonic shear layers. Proc. Combust. Inst. 30, 28352842.CrossRefGoogle Scholar
Shan, J. W. & Dimotakis, P. E. 2006 Reynolds-number effects and anisotropy in transverse-jet mixing. J. Fluid Mech. 566, 4796.CrossRefGoogle Scholar
She, Z. S., Jackson, E. & Orszag, S. A. 1990 Intermittent vortex structures in homogeneous isotropic turbulence. Nature 344 (6263), 226228.CrossRefGoogle Scholar
Slessor, M. D., Bond, C. L. & Dimotakis, P. E. 1998 Turbulent shear-layer mixing at high Reynolds numbers: effects of inflow conditions. J. Fluid Mech. 376, 115138.CrossRefGoogle Scholar
Slessor, M. D., Zhuang, M. & Dimotakis, P. E. 2000 Turbulent shear-layer mixing: growth-rate compressibility scaling. J. Fluid Mech. 414, 3545.CrossRefGoogle Scholar
Smagorinsky, J. 1963 General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weather Rev. 91, 99164.2.3.CO;2>CrossRefGoogle Scholar
Smith, S. H. & Mungal, M. G. 1998 Mixing, structure and scaling of the jet in crossflow. J. Fluid Mech. 357, 83122.CrossRefGoogle Scholar
Spaid, F. W. & Zukoski, E. E. 1968 Secondary injection of gases into a supersonic flow. AIAA J. 6 (2), 205212.CrossRefGoogle Scholar
Stevens, D. E., Ackerman, A. S. & Bretherton, C. S. 2002 Effects of domain size and numerical resolution on the simulation of shallow cumulus convection. J. Atmos. Sci. 59, 32853301.2.0.CO;2>CrossRefGoogle Scholar
Strand, B. 1994 Summation by parts for finite-difference approximations for d/dx. J. Comput. Phys. 110 (1), 4767.CrossRefGoogle Scholar
Stratford, B. S. 1959 The prediction of separation of the turbulent boundary layer. J. Fluid Mech. 5, 116.CrossRefGoogle Scholar
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.CrossRefGoogle Scholar
Thompson, K. W. 1987 Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 68, 124.CrossRefGoogle Scholar
Voelkl, T., Pullin, D. I. & Chan, D. C. 2000 A physical-space version of the stretched-vortex subgrid-stress model for large-eddy simulation. Phys. Fluids 12, 18101825.CrossRefGoogle Scholar
Vreman, B., Geurts, B. & Kuerten, H. 1996 Comparison of numerical schemes in large-eddy simulation of the temporal mixing layer. Intl J. Numer. Methods Fluids 22 (4), 297311.3.0.CO;2-X>CrossRefGoogle Scholar
Warhaft, Z. 2000 Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32 (1), 203240.CrossRefGoogle Scholar
Wesseling, P. 2001 Principles of Computational Fluid Dynamics. Springer.CrossRefGoogle Scholar
Williams, F. A. 1985 Combustion Theory. Addison Wiley.Google Scholar
Zang, T. A. 1991 On the rotation and skew-symmetric forms for incompressible flow simulations. Appl. Numer. Math. 7 (1), 2740.CrossRefGoogle Scholar
Zukoski, E. E. & Spaid, F. W. 1964 Secondary injection of gases into a supersonic flow. AIAA J. 2 (10), 16891696.CrossRefGoogle Scholar

Matheou et al. supplementary movie

Movie 1. Mixture fraction iso-surfaces for Case A1, lowerst resolution (top stream Mach number is 0.35 and bottom to top stream mass-injection ratio is 0.09). Three values of the mixture fraction are plotted: 0.8, 0.5, and 0.2, corresponding to red, green, and blue iso-surfaces, respectively. In this lowerst-resolution LES, the recirculation-region length is overpredicted.

Download Matheou et al. supplementary movie(Video)
Video 10.4 MB

Matheou et al. supplementary movie

Movie 2. Mixture fraction iso-surfaces for Case A2, medium resolution (top stream Mach number is 0.35 and bottom to top stream mass-injection ratio is 0.09). Three values of the mixture fraction are plotted: 0.8, 0.5, and 0.2, corresponding to red, green, and blue iso-surfaces, respectively. The increase in resolution compared to Case A1 (Movie 1) captures the flow features more accurately. Spanwise-organised structrures can be observed in the primary shear layer. Near the bottom wall, in the recirculation region, the flow is moving upstream forming a secondary mixing layer at the base of the ramp (x ~ 0.1). The primary shear layer reattachment location and recirculating flow unsteady characteristics are also visible.

Download Matheou et al. supplementary movie(Video)
Video 11.2 MB

Matheou et al. supplementary movie

Movie 3. Mixture fraction iso-surfaces for Case A3, highest resolution (top stream Mach number is 0.35 and bottom to top stream mass-injection ratio is 0.09). Three values of the mixture fraction are plotted: 0.8, 0.5, and 0.2, corresponding to red, green, and blue iso-surfaces, respectively. The finer grid allows the resolution of smaller spatial scales. Howerver, the flow features are almost identical as the medium resolution case (Movie 2).

Download Matheou et al. supplementary movie(Video)
Video 9.5 MB