Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T16:37:46.803Z Has data issue: false hasContentIssue false

Large-eddy simulation and wall modelling of turbulent channel flow

Published online by Cambridge University Press:  17 July 2009

D. CHUNG*
Affiliation:
Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
D. I. PULLIN
Affiliation:
Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
*
Email address for correspondence: [email protected]

Abstract

We report large-eddy simulation (LES) of turbulent channel flow. This LES neither resolves nor partially resolves the near-wall region. Instead, we develop a special near-wall subgrid-scale (SGS) model based on wall-parallel filtering and wall-normal averaging of the streamwise momentum equation, with an assumption of local inner scaling used to reduce the unsteady term. This gives an ordinary differential equation (ODE) for the wall shear stress at every wall location that is coupled with the LES. An extended form of the stretched-vortex SGS model, which incorporates the production of near-wall Reynolds shear stress due to the winding of streamwise momentum by near-wall attached SGS vortices, then provides a log relation for the streamwise velocity at the top boundary of the near-wall averaged domain. This allows calculation of an instantaneous slip velocity that is then used as a ‘virtual-wall’ boundary condition for the LES. A Kármán-like constant is calculated dynamically as part of the LES. With this closure we perform LES of turbulent channel flow for Reynolds numbers Reτ based on the friction velocity uτ and the channel half-width δ in the range 2 × 103 to 2 × 107. Results, including SGS-extended longitudinal spectra, compare favourably with the direct numerical simulation (DNS) data of Hoyas & Jiménez (2006) at Reτ = 2003 and maintain an O(1) grid dependence on Reτ.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, R. J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 041301.CrossRefGoogle Scholar
Cabot, W. & Moin, P. 1999 Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow. Flow Turbul. Combust. 63, 269291.CrossRefGoogle Scholar
Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1987 Spectral Methods in Fluid Dynamics. Springer.Google Scholar
Carpenter, M. H., Gottlieb, D. & Abarbanel, S. 1994 Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes. J. Comput. Phys. 111, 220236.CrossRefGoogle Scholar
Deardorff, J. W. 1970 A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41, 453480.CrossRefGoogle Scholar
DeGraaff, D. B. & Eaton, J. K. 2000 Reynolds-number scaling of the flat-plate turbulent boundary layer. J. Fluid Mech. 422, 319346.CrossRefGoogle Scholar
Del Álamo, J. C., Jiménez, J., Zandonade, P. & Moser, R. D. 2004 Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135144.CrossRefGoogle Scholar
Diener, P., Dorband, E. N., Schnetter, E. & Tiglio, M. 2007 Optimized high-order derivative and dissipation operators satisfying summation by parts, and applications in three-dimensional multi-block evolutions. J. Sci. Comput. 32, 109145.CrossRefGoogle Scholar
Ghosal, S. 1996 An analysis of numerical errors in large-eddy simulations of turbulence. J. Comput. Phys. 125, 187206.CrossRefGoogle Scholar
Gottlieb, D. & Shu, C. 1997 On the Gibbs phenomenon and its resolution. SIAM Rev. 39, 644668.CrossRefGoogle Scholar
Head, M. R. & Bandyopadhyay, P. 1981 New aspects of turbulent boundary-layer structure. J. Fluid Mech. 107, 297338.CrossRefGoogle Scholar
Hill, D. J., Pantano, C. & Pullin, D. I. 2006 Large-eddy simulation and multiscale modelling of a Richtmyer–Meshkov instability with reshock. J. Fluid Mech. 557, 2961.CrossRefGoogle Scholar
Hill, D. J. & Pullin, D. I. 2004 Hybrid tuned centre-difference – WENO method for large eddy simulations in the presence of strong shocks. J. Comput. Phys. 194, 435450.CrossRefGoogle Scholar
Hou, T. Y. & Li, R. 2007 Computing nearly singular solutions using pseudo-spectral methods. J. Comput. Phys. 226, 379397.CrossRefGoogle Scholar
Hoyas, S. & Jiménez, J. 2006 Scaling of the velocity fluctuations in turbulent channels up to Re τ = 2003. Phys. Fluids 18, 011702.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. A 365, 647664.CrossRefGoogle ScholarPubMed
Jiménez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.CrossRefGoogle Scholar
Lundgren, T. S. 1982 Strained spiral vortex model for turbulent fine structure. Phys. Fluids 25, 21932203.CrossRefGoogle Scholar
Marušić, I. & Perry, A. E. 1995 A wall-wake model for the turbulence structure of boundary layers. Part 2. Further experimental support. J. Fluid Mech. 298, 389407.CrossRefGoogle Scholar
Mattsson, K. & Nordström, J. 2004 Summation by parts operators for finite difference approximations of second derivatives. J. Comput. Phys. 199, 503540.CrossRefGoogle Scholar
Misra, A. & Pullin, D. I. 1997 A vortex-based subgrid stress model for large-eddy simulation. Phys. Fluids 9, 24432454.CrossRefGoogle Scholar
Nakayama, A., Noda, H. & Maeda, K. 2004 Similarity of instantaneous and filtered velocity fields in the near wall region of zero-pressure gradient boundary layer. Fluid Dyn. Res. 35, 299321.CrossRefGoogle Scholar
Nickels, T. B. 2004 Inner scaling for wall-bounded flows subject to large pressure gradients. J. Fluid Mech. 521, 217239.CrossRefGoogle Scholar
Nickels, T. B., Marusic, I., Hafez, S., Hutchins, N. & Chong, M. S. 2007 Some predictions of the attached eddy model for a high Reynolds number boundary layer. Phil. Trans. R. Soc. A 365, 807822.CrossRefGoogle ScholarPubMed
O'Gorman, P. A. & Pullin, D. I. 2003 The velocity-scalar cross spectrum of stretched spiral vortices. Phys. Fluids 15, 280291.CrossRefGoogle Scholar
Pantano, C., Deiterding, R., Hill, D. J. & Pullin, D. I. 2007 A low numerical dissipation patch-based adaptive mesh refinement method for large-eddy simulation of compressible flows. J. Comput. Phys. 221, 6387.CrossRefGoogle Scholar
Pantano, C., Pullin, D. I., Dimotakis, P. E. & Matheou, G. 2008 LES approach for high Reynolds number wall-bounded flows with application to turbulent channel flow. J. Comput. Phys. 227, 92719291.CrossRefGoogle Scholar
Perry, A. E. & Chong, M. S. 1982 On the mechanism of wall turbulence. J. Fluid Mech. 119, 173217.CrossRefGoogle Scholar
Piomelli, U. 2008 Wall-layer models for large-eddy simulation. Prog. Aerosp. Sci. 44, 437446.CrossRefGoogle Scholar
Piomelli, U. & Balaras, E. 2002 Wall-layer models for large-eddy simulations. Annu. Rev. Fluid Mech. 34, 349374.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Pope, S. B. 2004 Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6, 35.CrossRefGoogle Scholar
Pullin, D. I. 2000 A vortex-based model for the subgrid flux of a passive scalar. Phys. Fluids 12, 23112319.CrossRefGoogle Scholar
Pullin, D. I. & Lundgren, T. S. 2001 Axial motion and scalar transport in stretched spiral vortices. Phys. Fluids 13, 25532563.CrossRefGoogle Scholar
Pullin, D. I. & Saffman, P. G. 1993 On the Lundgren–Townsend model of turbulent fine scales. Phys. Fluids A 5, 126145.CrossRefGoogle Scholar
Pullin, D. I. & Saffman, P. G. 1994 Reynolds stresses and one-dimensional spectra for a vortex model of homogeneous anisotropic turbulence. Phys. Fluids 6, 17871796.CrossRefGoogle Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.CrossRefGoogle Scholar
Saddoughi, S. G. & Veeravalli, S. V. 1994 Local isotropy in turbulent boundary layers at high Reynolds number. J. Fluid Mech. 268, 333372.CrossRefGoogle Scholar
Smagorinsky, J. 1963 General circulation experiments with the primitive equations. Part 1. The basic experiment. Mon. Weather Rev. 91, 99164.2.3.CO;2>CrossRefGoogle Scholar
Spalart, P. R., Moser, R. D. & Rogers, M. M. 1991 Spectral methods for the Navier–Stokes equations with one infinite and two periodic directions. J. Comput. Phys. 96, 297324.CrossRefGoogle Scholar
Strand, B. 1994 Summation by parts for finite difference approximations for d/dx. J. Comput. Phys. 110, 4767.CrossRefGoogle Scholar
Templeton, J. A., Medic, G. & Kalitzin, G. 2005 An eddy-viscosity based near-wall treatment for coarse grid large-eddy simulation. Phys. Fluids 17, 105101.CrossRefGoogle Scholar
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.Google Scholar
Voelkl, T., Pullin, D. I. & Chan, D. C. 2000 A physical-space version of the stretched-vortex subgrid-stress model for large-eddy simulation. Phys. Fluids 12, 18101825.CrossRefGoogle Scholar
Wang, M. & Moin, P. 2002 Dynamic wall modelling for large-eddy simulation of complex turbulent flows. Phys. Fluids 14, 20432051.CrossRefGoogle Scholar