Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T02:51:28.624Z Has data issue: false hasContentIssue false

Large-deformation electrohydrodynamics of an elastic capsule in a DC electric field

Published online by Cambridge University Press:  23 February 2018

Sudip Das
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
Rochish M. Thaokar*
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
*
Email address for correspondence: [email protected]

Abstract

The dynamics of a spherical elastic capsule, containing a Newtonian fluid bounded by an elastic membrane and immersed in another Newtonian fluid, in a uniform DC electric field is investigated. Discontinuity of electrical properties, such as the conductivities of the internal and external fluid media as well as the capacitance and conductance of the membrane, leads to a net interfacial Maxwell stress which can cause the deformation of such an elastic capsule. We investigate this problem considering well-established membrane laws for a thin elastic membrane, with fully resolved hydrodynamics in the Stokes flow limit, and describe the electrostatics using the capacitor model. In the limit of small deformation, the analytical theory predicts the dynamics fairly satisfactorily. Large deformations at high capillary number, though, necessitate a numerical approach (axisymmetric boundary element method in the present case) to solve this highly nonlinear problem. Akin to vesicles, at intermediate times, highly nonlinear biconcave shapes along with squaring and hexagon-like shapes are observed when the outer medium is more conducting. The study identifies the essentiality of parameters such as high membrane capacitance, low membrane conductance, low hydrodynamic time scales and high capillary number (the ratio of the destabilizing electric force to the stabilizing elastic force) for observation of these shape transitions. The transition is due to large compressive Maxwell stress at the poles at intermediate times. Thus such shape transition can be seen in spherical globules admitting electrical capacitance, possibly irrespective of the nature of the interfacial restoring force.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barthès-Biesel, D. 1980 Motion of a spherical microcapsule freely suspended in a linear shear flow. J. Fluid Mech. 100 (4), 831853.CrossRefGoogle Scholar
Barthès-Biesel, D. 1991 Role of interfacial properties on the motion and deformation of capsules in shear flow. Physica 172 (1), 103124.CrossRefGoogle Scholar
Barthès-Biesel, D. & Chhim, V. 1981 The constitutive equation of a dilute suspension of spherical microcapsules. Intl J. Multiphase Flow 7 (5), 493505.CrossRefGoogle Scholar
Barthès-Biesel, D., Diaz, A. & Dhenin, E. 2002 Effect of constitutive laws for two-dimensional membranes on flow-induced capsule deformation. J. Fluid Mech. 460, 211222.CrossRefGoogle Scholar
Barthès-Biesel, D. & Rallison, J. M. 1981 The time-dependent deformation of a capsule freely suspended in a linear shear flow. J. Fluid Mech. 113, 251267.CrossRefGoogle Scholar
Chang, K. S. & Olbricht, W. L. 1993 Experimental studies of the deformation of a synthetic capsule in extensional flow. J. Fluid Mech. 250, 587608.CrossRefGoogle Scholar
Crowley, J. M. 1973 Electrical breakdown of bimolecular lipid membranes as an electromechanical instability. Biophys. J. 13 (7), 711724.CrossRefGoogle ScholarPubMed
Das, S., Mayya, Y. S. & Thaokar, R. 2015 Dynamics of a charged drop in a quadrupole electric field. Europhys. Lett. 111 (2), 24006.CrossRefGoogle Scholar
DeBruin, K. A. & Krassowska, W. 1999 Modeling electroporation in a single cell. I. Effects of field strength and rest potential. Biophys. J. 77 (3), 12131224.CrossRefGoogle Scholar
Deshmukh, S. D. & Thaokar, R. M. 2012 Deformation, breakup and motion of a perfect dielectric drop in a quadrupole electric field. Phys. Fluids 24 (3), 032105.CrossRefGoogle Scholar
Deshmukh, S. D. & Thaokar, R. M. 2013 Deformation and breakup of a leaky dielectric drop in a quadrupole electric field. J. Fluid Mech. 731, 713733.CrossRefGoogle Scholar
Diaz, A., Pelekasis, N. & Barthès-Biesel, D. 2000 Transient response of a capsule subjected to varying flow conditions: effect of internal fluid viscosity and membrane elasticity. Phys. Fluids 12 (5), 948957.CrossRefGoogle Scholar
Dimova, R., Bezlyepkina, N., Jordo, M. D., Knorr, R. L., Riske, K. A., Staykova, M., Vlahovska, P. M., Yamamoto, T., Yang, P. & Lipowsky, R. 2009 Vesicles in electric fields: some novel aspects of membrane behavior. Soft Matt. 5, 32013212.CrossRefGoogle Scholar
Dimova, R., Riske, K. A., Aranda, S., Bezlyepkina, N., Knorr, R. L. & Lipowsky, R. 2007 Giant vesicles in electric fields. Soft Matt. 3, 817827.CrossRefGoogle ScholarPubMed
Dodson, W. R. & Dimitrakopoulos, P. 2009 Dynamics of strain-hardening and strain-softening capsules in strong planar extensional flows via an interfacial spectral boundary element algorithm for elastic membranes. J. Fluid Mech. 641, 263296.CrossRefGoogle Scholar
Dubreuil, F., Elsner, N. & Fery, A. 2003 Elastic properties of polyelectrolyte capsules studied by atomic-force microscopy and RICM. Eur. Phys. J. E 12 (2), 215221.Google ScholarPubMed
Dupont, C., Salsac, A.-V., Barthès-Biesel, D., Vidrascu, M. & Tallec, P. L. 2015 Influence of bending resistance on the dynamics of a spherical capsule in shear flow. Phys. Fluids 27 (5), 051902.CrossRefGoogle Scholar
Farutin, A. & Misbah, C. 2012 Squaring, parity breaking, and S tumbling of vesicles under shear flow. Phys. Rev. Lett. 109, 248106.CrossRefGoogle ScholarPubMed
Fery, A. & Weinkamer, R. 2007 Mechanical properties of micro- and nanocapsules: single-capsule measurements. Polymer 48 (25), 72217235.CrossRefGoogle Scholar
Finken, R., Kessler, S. & Seifert, U. 2011 Micro-capsules in shear flow. J. Phys.: Condens. Matter 23 (18), 184113.Google ScholarPubMed
Finken, R. & Seifert, U. 2006 Wrinkling of microcapsules in shear flow. J. Phys.: Condens. Matter 18 (15), L185L191.Google Scholar
Gao, C., Leporatti, S., Moya, S., Donath, E. & Möhwald, H. 2001 Stability and mechanical properties of polyelectrolyte capsules obtained by stepwise assembly of poly(styrenesulfonate sodium salt) and poly(diallyldimethyl ammonium) chloride onto melamine resin particles. Langmuir 17 (11), 34913495.CrossRefGoogle Scholar
Green, A. E. & Adkins, J. E. 1970 Large Elastic Deformation, 2nd edn. Oxford University Press.Google Scholar
Grosse, C. & Schwan, H. P. 1992 Cellular membrane potentials induced by alternating fields. Biophys. J. 63 (6), 16321642.CrossRefGoogle ScholarPubMed
Ha, J.-W. & Yang, S.-M. 2000 Electrohydrodynamic effects on the deformation and orientation of a liquid capsule in a linear flow. Phys. Fluids 12 (7), 16711684.CrossRefGoogle Scholar
Hu, W.-F., Kim, Y. & Lai, M.-C. 2014 An immersed boundary method for simulating the dynamics of three-dimensional axisymmetric vesicles in Navier–Stokes flows. J. Comput. Phys. A 257, 670686.CrossRefGoogle Scholar
Hu, W.-F., Lai, M.-C., Seol, Y. & Young, Y.-N. 2016 Vesicle electrohydrodynamic simulations by coupling immersed boundary and immersed interface method. J. Comput. Phys. 317, 6681.CrossRefGoogle Scholar
Hyman, W. A. & Skalak, R. 1972 Non-Newtonian behavior of a suspension of liquid drops in tube flow. AIChE J. 18 (1), 149154.CrossRefGoogle Scholar
Kang, Y., Li, D., Kalams, S. A. & Eid, J. E. 2008 DC-dielectrophoretic separation of biological cells by size. Biomedical Microdevices 10 (2), 243249.CrossRefGoogle ScholarPubMed
Karyappa, R. B., Deshmukh, S. D. & Thaokar, R. M. 2014a Breakup of a conducting drop in a uniform electric field. J. Fluid Mech. 754, 550589.CrossRefGoogle Scholar
Karyappa, R. B., Deshmukh, S. D. & Thaokar, R. M. 2014b Deformation of an elastic capsule in a uniform electric field. Phys. Fluids 26 (12), 122108.CrossRefGoogle Scholar
Kataoka, K., Harada, A. & Nagasaki, Y. 2001 Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Deliv. Rev. 47 (1), 113131; Special Issue: Nanoparticulate systems for improved drug delivery.CrossRefGoogle ScholarPubMed
Keller, M. W. & Sottos, N. R. 2006 Mechanical properties of microcapsules used in a self-healing polymer. Exp. Mech. 46 (6), 725733.CrossRefGoogle Scholar
Kessler, S., Finken, R. & Seifert, U. 2008 Swinging and tumbling of elastic capsules in shear flow. J. Fluid Mech. 605, 207226.CrossRefGoogle Scholar
Kessler, S., Finken, R. & Seifert, U. 2009 Elastic capsules in shear flow: analytical solutions for constant and time-dependent shear rates. Eur. Phys. J. E 29 (4), 399413.Google ScholarPubMed
Kolahdouz, E. M. & Salac, D. 2015a Dynamics of three-dimensional vesicles in dc electric fields. Phys. Rev. E 92, 012302.Google ScholarPubMed
Kolahdouz, E. M. & Salac, D. 2015b Electrohydrodynamics of three-dimensional vesicles: a numerical approach. SIAM J. Sci. Comput. 37 (3), B473B494.CrossRefGoogle Scholar
Kwak, S. & Pozrikidis, C. 2001 Effect of membrane bending stiffness on the axisymmetric deformation of capsules in uniaxial extensional flow. Phys. Fluids 13 (5), 12341242.CrossRefGoogle Scholar
Lac, E. & Barthès-Biesel, D. 2005 Deformation of a capsule in simple shear flow: effect of membrane prestress. Phys. Fluids 17 (7), 072105.CrossRefGoogle Scholar
Lac, E., Barthès-Biesel, D., Pelekasis, N. A. & Tsamopoulos, J. 2004 Spherical capsules in three-dimensional unbounded Stokes flows: effect of the membrane constitutive law and onset of buckling. J. Fluid Mech. 516, 303334.CrossRefGoogle Scholar
Le, D. V. 2010 Effect of bending stiffness on the deformation of liquid capsules enclosed by thin shells in shear flow. Phys. Rev. E 82, 016318.Google ScholarPubMed
Lighthill, M. J. 1968 Pressure-forcing of tightly fitting pellets along fluid-filled elastic tubes. J. Fluid Mech. 34 (1), 113143.CrossRefGoogle Scholar
de Loubens, C., Deschamps, J., Boedec, G. & Leonetti, M. 2015 Stretching of capsules in an elongation flow, a route to constitutive law. J. Fluid Mech. 767, R3.CrossRefGoogle Scholar
McConnell, L. C., Miksis, M. J. & Vlahovska, P. M. 2013 Vesicle electrohydrodynamics in dc electric fields. IMA J. Appl. Maths 78 (4), 797817.CrossRefGoogle Scholar
McConnell, L. C., Miksis, M. J. & Vlahovska, P. M. 2015a Continuum modeling of the electric-field-induced tension in deforming lipid vesicles. J. Chem. Phys. 143 (24), 243132.CrossRefGoogle ScholarPubMed
McConnell, L. C., Vlahovska, P. M. & Miksis, M. J. 2015b Vesicle dynamics in uniform electric fields: squaring and breathing. Soft Matt. 11, 48404846.CrossRefGoogle ScholarPubMed
Navot, Y. 1998 Elastic membranes in viscous shear flow. Phys. Fluids 10 (8), 18191833.CrossRefGoogle Scholar
Neumann, E., Sowers, A. E. & Jordan, C. A. 1989 Electroporation and Electrofusion in Cell Biology, 1st edn. Plenum Press.CrossRefGoogle Scholar
Ouriemi, M. & Vlahovska, P. M. 2015 Electrohydrodynamic deformation and rotation of a particle-coated drop. Langmuir 31 (23), 62986305.CrossRefGoogle ScholarPubMed
Pethig, R. 1996 Dielectrophoresis: using inhomogeneous ac electrical fields to separate and manipulate cells. Crit. Rev. Biotechnol. 16 (4), 331348.CrossRefGoogle Scholar
Pozrikidis, C. 1990 The axisymmetric deformation of a red blood cell in uniaxial straining Stokes flow. J. Fluid Mech. 216, 231254.CrossRefGoogle Scholar
Pozrikidis, C. 1995 Finite deformation of liquid capsules enclosed by elastic membranes in simple shear flow. J. Fluid Mech. 297, 123152.CrossRefGoogle Scholar
Pozrikidis, C. 2001 Effect of membrane bending stiffness on the deformation of capsules in simple shear flow. J. Fluid Mech. 440, 269291.CrossRefGoogle Scholar
Rallison, J. M. & Acrivos, A. 1978 A numerical study of the deformation and burst of a viscous drop in an extensional flow. J. Fluid Mech. 89, 191200.CrossRefGoogle Scholar
Ramanujan, S. & Pozrikidis, C. 1998 Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities. J. Fluid Mech. 361, 117143.CrossRefGoogle Scholar
Rao, P. R., Zahalak, G. I. & Sutera, S. P. 1994 Large deformations of elastic cylindrical capsules in shear flows. J. Fluid Mech. 270, 7390.CrossRefGoogle Scholar
Riske, K. A. & Dimova, R. 2006 Electric pulses induce cylindrical deformations on giant vesicles in salt solutions. Biophys. J. 91 (5), 17781786.CrossRefGoogle ScholarPubMed
Schwalbe, J. T., Vlahovska, P. M. & Miksis, M. J. 2011 Vesicle electrohydrodynamics. Phys. Rev. E 83, 046309.Google ScholarPubMed
Skalak, R., Tozeren, A., Zarda, R. P. & Chien, S. 1973 Strain energy function of red blood cell membranes. Biophys. J. 13 (3), 245264.CrossRefGoogle ScholarPubMed
Skotheim, J. M. & Secomb, T. W. 2007 Red blood cells and other nonspherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition. Phys. Rev. Lett. 98, 078301.CrossRefGoogle ScholarPubMed
Sui, Y., Chen, X. B., Chew, Y. T., Roy, P. & Low, H. T. 2010 Numerical simulation of capsule deformation in simple shear flow. Comput. Fluids 39 (2), 242250.CrossRefGoogle Scholar
Sui, Y., Chew, Y. T., Roy, P. & Low, H. T. 2007 Effect of membrane bending stiffness on the deformation of elastic capsules in extensional flow: a lattice Boltzmann study. Intl J. Mod. Phys. C 18 (08), 12771291.CrossRefGoogle Scholar
Sui, Y., Chew, Y. T., Roy, P. & Low, H. T. 2008a A hybrid method to study flow-induced deformation of three-dimensional capsules. J. Comput. Phys. 227 (12), 63516371.CrossRefGoogle Scholar
Sui, Y., Low, H. T., Chew, Y. T. & Roy, P. 2008b Tank-treading, swinging, and tumbling of liquid-filled elastic capsules in shear flow. Phys. Rev. E 77, 016310.Google ScholarPubMed
Taylor, G. I. 1934 The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. A 146 (858), 501523.Google Scholar
Thaokar, R. M. 2016 Time-dependent electrohydrodynamics of a compressible viscoelastic capsule in the small-deformation limit. Phys. Rev. E 94, 042607.Google ScholarPubMed
Thaokar, R. M. & Deshmukh, S. D. 2010 Rayleigh instability of charged drops and vesicles in the presence of counterions. Phys. Fluids 22 (3), 034107.CrossRefGoogle Scholar
Tieleman, D. P. 2004 The molecular basis of electroporation. BMC Biochem. 5 (1), 10.CrossRefGoogle ScholarPubMed
Trefethen, L. N.1996 Finite difference and spectral methods for ordinary and partial differential equations. Unpublished text https://people.maths.ox.ac.uk/trefethen/pdetext.html.Google Scholar
Veerapaneni, S. 2016 Integral equation methods for vesicle electrohydrodynamics in three dimensions. J. Comput. Phys. 326, 278289.CrossRefGoogle Scholar
Vlahovska, P. M., Young, Y.-N., Danker, G. & Misbah, C. 2011 Dynamics of a non-spherical microcapsule with incompressible interface in shear flow. J. Fluid Mech. 678, 221247.CrossRefGoogle Scholar
Yamamoto, T., Aranda-Espinoza, S., Dimova, R. & Lipowsky, R. 2010 Stability of spherical vesicles in electric fields. Langmuir 26 (14), 1239012407.CrossRefGoogle ScholarPubMed
Zhou, H. & Pozrikidis, C. 1995 Deformation of liquid capsules with incompressible interfaces in simple shear flow. J. Fluid Mech. 283, 175200.CrossRefGoogle Scholar
Supplementary material: File

Das and Thaokar supplementary material 1

Das and Thaokar supplementary material

Download Das and Thaokar supplementary material 1(File)
File 213.6 KB