Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-03T13:14:55.688Z Has data issue: false hasContentIssue false

Large-amplitude flapping of an inverted flag in a uniform steady flow – a vortex-induced vibration

Published online by Cambridge University Press:  18 March 2016

John E. Sader*
Affiliation:
School of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia Kavli Nanoscience Institute and Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA
Julia Cossé
Affiliation:
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
Daegyoum Kim
Affiliation:
Department of Mechanical Engineering, KAIST, Daejeon 34141, Republic of Korea
Boyu Fan
Affiliation:
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
Morteza Gharib
Affiliation:
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
*
Email address for correspondence: [email protected]

Abstract

The dynamics of a cantilevered elastic sheet, with a uniform steady flow impinging on its clamped end, have been studied widely and provide insight into the stability of flags and biological phenomena. Recent measurements by Kim et al. (J. Fluid Mech., vol. 736, 2013, R1) show that reversing the sheet’s orientation, with the flow impinging on its free edge, dramatically alters its dynamics. In contrast to the conventional flag, which exhibits (small-amplitude) flutter above a critical flow speed, the inverted flag displays large-amplitude flapping over a finite band of flow speeds. The physical mechanisms giving rise to this flapping phenomenon are currently unknown. In this article, we use a combination of mathematical theory, scaling analysis and measurement to establish that this large-amplitude flapping motion is a vortex-induced vibration. Onset of flapping is shown mathematically to be due to divergence instability, verifying previous speculation based on a two-point measurement. Reducing the sheet’s aspect ratio (height/length) increases the critical flow speed for divergence and ultimately eliminates flapping. The flapping motion is associated with a separated flow – detailed measurements and scaling analysis show that it exhibits the required features of a vortex-induced vibration. Flapping is found to be periodic predominantly, with a transition to chaos as flow speed increases. Cessation of flapping occurs at higher speeds – increased damping reduces the flow speed range where flapping is observed, as required. These findings have implications for leaf motion and other biological processes, such as the dynamics of hair follicles, because they also can present an inverted-flag configuration.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ait Abderrahmane, H., Paidoussis, M. P., Fayed, M. & Ng, H. D. 2012 Nonlinear dynamics of silk and mylar flags flapping in axial flow. J. Wind Engng Ind. Aerodyn. 107–108, 225236.CrossRefGoogle Scholar
Alben, S. & Shelley, M. J. 2008 Flapping states of a flag in an inviscid fluid: bistability and the transition to chaos. Phys. Rev. Lett. 100, 074301.Google Scholar
Anderson, J. D. 1991 Fundamentals of Aerodynamics. McGraw-Hill.Google Scholar
Argentina, M. & Mahadevan, L. 2005 Fluid-flow-induced flutter of a flag. Proc. Natl Acad. Sci. USA 102, 18291834.Google Scholar
Bearman, P. W. 1984 Vortex shedding from oscillating bluff bodies. Annu. Rev. Fluid Mech. 16, 195222.Google Scholar
Bernard, H. 1908 Formation de centres de giration a l’arriere d’un obstacle en mouvement. C. R. Acad. Sci. Paris 147, 839842, 970–972.Google Scholar
Blackburn, H. & Henderson, R. 1996 Lock-in behavior in simulated vortex-induced vibration. Exp. Therm. Fluid Sci. 12, 184189.Google Scholar
Brika, D. & Laneville, A. 1993 Vortex-induced vibrations of a long flexible circular cylinder. J. Fluid Mech. 250, 481508.Google Scholar
Buchak, P., Eloy, C. & Reis, P. M. 2009 Nonlinear aerodynamic damping of sharp-edged flexible beams oscillating at low Keulegan–Carpenter numbers. J. Fluid Mech. 634, 269289.Google Scholar
Buchak, P., Eloy, C. & Reis, P. M. 2010 The clapping book: wind-driven oscillations in a stack of elastic sheets. Phys. Rev. Lett. 105, 194301.CrossRefGoogle Scholar
Can Kara, M., Stoesser, T. & Mcsherry, R. 2015 Calculation of fluid–structure interaction: methods, refinements, applications. Engng Comput. Mech. 168, 5978.Google Scholar
Chen, M., Jia, L.-B., Wu, Y.-F., Yin, W.-Z. & Ma, W.-B. 2014 Bifurcation and chaos of a flag in an inviscid flow. J. Fluids Struct. 45, 124137.CrossRefGoogle Scholar
Connell, B. S. H. & Yue, D. K. P. 2007 Flapping dynamics of a flag in a uniform stream. J. Fluid Mech. 581, 3367.Google Scholar
Cossé, J., Sader, J. E., Kim, D., Huertas Cerdeira, C. & Gharib, M. 2014 The effect of aspect ratio and angle of attack in the transition regions of the inverted flag instability. In Proc. ASME 2014 Press. Vess. Pip. Conf., (http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1938015).Google Scholar
Eloy, C., Lagrange, R., Souilliez, C. & Schouveiler, L. 2008 Aeroelastic instability of cantilevered flexible plates in uniform flow. J. Fluid Mech. 611, 97106.CrossRefGoogle Scholar
Fage, A. & Johansen, F. C. 1927 On the flow of air behind an inclined flat plate of infinite span. Proc. R. Soc. Lond. A 116, 170197.Google Scholar
Gabbai, R. D. & Benaroya, H. 2005 An overview of modeling and experiments of vortex-induced vibration of circular cylinders. J. Sound Vib. 282, 575616.CrossRefGoogle Scholar
Gilmanov, A., Le, T. B. & Sotiropoulos, F. 2015 A numerical approach for simulating fluid structure interaction of flexible thin shells undergoing arbitrarily large deformations in complex domains. J. Comput. Phys. 300, 814843.CrossRefGoogle Scholar
Glauert, H. 1926 The Elements of Airfoil and Airscrew Theory. Cambridge University Press.Google Scholar
Guo, C. Q. & Paidoussis, M. P. 2000 Stability of rectangular plates with free side-edges in two-dimensional inviscid channel flow. Trans. ASME J. Appl. Mech. 67, 171176.Google Scholar
Higgins, G. J.1929 The prediction of airfoil characteristics. Tech. Rep. 312. National Advisory Committee for Aeronautics.Google Scholar
Jones, M. A. 2003 The separated flow of an inviscid fluid around a moving flat plate. J. Fluid Mech. 496, 405441.Google Scholar
Jones, M. A. & Shelley, M. J. 2005 Falling cards. J. Fluid Mech. 540, 393425.Google Scholar
von Karman, T. 1911 Uber den mechanismus des widerstandes, den ein bewegter korper in einer flussigkeit erfahrt. Gottinger Nachrichten, Mathemamatisch-Physikalische Klasse 1911, 509517.Google Scholar
von Karman, T. 1912 Uber den mechanismus des widerstandes, den ein bewegter korper in einer flussigkeit erfahrt. Gottinger Nachrichten, Mathemamatisch-Physikalische Klasse 1912, 547556.Google Scholar
Khalak, A. & Williamson, C. H. K. 1999 Motions, forces and mode transitions in vortex-induced vibrations at low-mass-damping. J. Fluids Struct. 13, 813851.CrossRefGoogle Scholar
Kim, D., Cosse, J., Huertas Cerdeira, C. & Gharib, M. 2013 Flapping dynamics of an inverted flag. J. Fluids Mech. 736, R1.Google Scholar
Knisely, C. W. 1990 Strouhal numbers of rectangular cylinders at incidence: a review and new data. J. Fluids Struct. 4, 371393.CrossRefGoogle Scholar
Kornecki, A., Dowell, E. H. & O’Brien, J. 1976 On the aeroelastic instability of two-dimensional panels in uniform incompressible flow. J. Sound Vib. 47 (2), 163178.Google Scholar
Lam, K. M. & Wei, C. T. 2010 Numerical simulation of vortex shedding from an inclined flat plate. Engng Appl. Comput. Fluid Mech. 4, 569579.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1970 Theory of Elasticity. Pergamon.Google Scholar
Leissa, A. W.1969 Vibration of plates. Tech. Rep. SP-160. National Aeronautics and Space Administration.Google Scholar
Lindholm, U. S., Kana, D. D., Chu, W.-H. & Abramson, H. N. 1965 Vibration characteristics of cantilever plates in water. J. Ship Res. 9, 1122.Google Scholar
Looker, J. R. & Sader, J. E. 2008 Flexural resonant frequencies of thin rectangular cantilever plates. Trans. ASME J. Appl. Mech. 75, 011007.Google Scholar
Mallock, A. 1907 On the resistance of air. Proc. R. Soc. Lond. A 79, 262265.Google Scholar
Manela, A. & Howe, M. S. 2009 The forces motion of a flag. J. Fluids Mech. 635, 439454.Google Scholar
Michelin, S., Llewellyn Smith, S. G. & Glover, B. J. 2008 Vortex shedding model of a flapping flag. J. Fluid Mech. 617, 110.Google Scholar
Onoue, K., Song, A., Strom, B. & Breuer, K. S. 2015 Large amplitude flow-induced oscillations and energy harvesting using a cyber-physical pitching plate. J. Fluids Struct. 55, 262275.Google Scholar
Paidoussis, M. P., Price, S. J. & De Langre, E. 2010 Fluid–Structure Interactions: Cross-Flow Instabilities. Cambridge University Press.Google Scholar
Pelletier, A. & Mueller, T. J. 2000 Low Reynolds number aerodynamics of low-aspect-ratio, thin/flat/cambered-plate wings. J. Aircraft 37 (5), 825832.Google Scholar
Rinaldi, S. & Paidoussis, M. P. 2012 Theory and experiments on the dynamics of a free-clamped cylinder in confined axial air-flow. J. Fluids Struct. 28, 167179.Google Scholar
Roshko, A.1954 On the drag and shedding frequency of two-dimensional bluff bodies. Tech. Rep. 3169. National Advisory Committee for Aeronautics.Google Scholar
Ryu, J., Park, S. G., Kim, B. & Sung, H. J. 2015 Flapping dynamics of an inverted flag in a uniform flow. J. Fluids Struct. 57, 159169.Google Scholar
Sader, J. E. 1998 Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys. 84 (1), 6476.CrossRefGoogle Scholar
Sader, J. E. & White, L. 1993 Theoretical analysis of the static deflection of plates for atomic force microscope applications. J. Appl. Phys. 74, 19.Google Scholar
Schmitz, F. W. 1941 Aerodynamics of the Model Airplane. Part 1. Airfoil Measurements. Redstone Scientific Information Center.Google Scholar
Shelley, M. J. & Zhang, J. 2011 Flapping and bending bodies interacting with fluid flows. Annu. Rev. Fluid Mech. 43, 449465.Google Scholar
Shiels, D., Leonard, A. & Roshko, A. 2001 Flow-induced vibration of a circular cylinder at limiting structural parameters. J. Fluids Struct. 15, 321.CrossRefGoogle Scholar
Strogatz, S. H. 1994 Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering. Perseus Books Publishing.Google Scholar
Tadrist, L., Saudreau, M. & De Langre, E. 2014 Wind and gravity mechanical effects on leaf inclination angles. J. Theor. Biol. 341, 916.CrossRefGoogle ScholarPubMed
Tang, C., Liu, N.-S. & Lu, X.-Y. 2015 Dynamics of an inverted flexible plate in a uniform flow. Phys. Fluids 27, 073601.Google Scholar
Theodorsen, T. 1935 General theory of aerodynamic instability and the mechanism of flutter. NACA Tech. Rep. 496, 414433.Google Scholar
Tornado2015 Version 135. A vortex lattice method implemented in Matlab (http://www.redhammer.se/tornado).Google Scholar
Williamson, C. H. K. & Govardhan, R. 2004 Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36, 413455.Google Scholar
Zhang, J., Childress, S., Libchaber, A. & Shelley, M. 2000 Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind. Nature 408, 835839.Google Scholar

Sader et al. supplementary movie

Measurement of flapping motion of the inverted-flag showing the effect of the pole (air speed is 3.5 m/s).

Download Sader et al. supplementary movie(Video)
Video 1.5 MB