Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-19T05:44:08.775Z Has data issue: false hasContentIssue false

Landslide tsunamis propagating along a plane beach

Published online by Cambridge University Press:  25 February 2008

P. SAMMARCO
Affiliation:
Dipartimento di Ingegneria Civile, Università degli Studi di Roma Tor Vergata, Via del Politecnico 1, 00133, Roma, Italy
E. RENZI
Affiliation:
Dipartimento di Ingegneria Civile, Università degli Studi di Roma Tor Vergata, Via del Politecnico 1, 00133, Roma, Italy

Abstract

A forced two-horizontal-dimension analytical model is developed to investigate the distinguishing physical features of landslide-induced tsunamis generated and propagating on a plane beach. The analytical solution is employed to study the wave field at small times after the landslide motion starts. At larger times, the occurrence of transient edge waves travelling along the shoreline is demonstrated, showing the differences with the transient waves propagating over a bottom of constant depth. Results are satisfactorily compared with available experimental data. Finally, the validity of non-forced numerical models is discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Carrier, G. F., Wu, T.-R. & Yeh, H. 2003 Tsunami run-up and draw-down on a plane beach. J. Fluid Mech. 475, 7999CrossRefGoogle Scholar
DiRisio, M. Risio, M., Bellotti, G., Panizzo, A. & DeGirolamo, P. Girolamo, P. 2008 Three-dimensional experiments on water waves generated by landslides at a sloping coast. J. Fluid Mech. (submitted).Google Scholar
DiRisio, M. Risio, M. & Sammarco, P. 2008 Transient linear waves generated by a falling box. J. Waterway, Port, Coastal Ocean Engng.,134, (in press).Google Scholar
Liu, P. L.-F., Lynett, P. & Synolakis, C. E. 2003 Analytical solutions for forced long waves on a sloping beach. J. Fluid Mech. 478, 101109.CrossRefGoogle Scholar
Liu, P. L.-F., Wu, T.-R., Raichlen, F., Synolakis, C. E. & Borrero, J. C. 2005 Runup and rundown generated by three-dimensional sliding masses. J. Fluid Mech. 536, 107144.CrossRefGoogle Scholar
Lynett, P. & Liu, P. L.-F. 2005 A numerical study of the runup generated by three-dimensional landslides. J. Geophys. Res. 110, C03006.CrossRefGoogle Scholar
Mei, C. C., Stiassnie, M. & Yue, D. 2005 Theory and Application of Ocean Surface Waves. World Scientific.Google Scholar
Panizzo, A., DeGirolamo, P. Girolamo, P. & Petaccia, A. 2005 Forecasting impulse waves generated by subaerial landslides. J. Geophys. Res. 110, C12025.CrossRefGoogle Scholar
Watts, P. 1997 Water waves generated by underwater landslides. PhD thesis, California Institute of Technology.Google Scholar
Watts, P., Grilli, S. T., Kirby, J. T., Fryer, G. J. & Tappin, D. R. 2003 Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Nat. Hazard. Earth Syst. Sci. 3, 391402.CrossRefGoogle Scholar
Watts, P., Grilli, S. T., Tappin, D. R. & Fryer, G. J. 2005 Tsunami generation by submarine mass failure. II: predictive equations and case studies. J. Waterway, Port, Coasal Oc. Engng. 131, 298310.CrossRefGoogle Scholar
Wiegel, R. L. 1955 Laboratory studies of gravity waves generated by the movement of a submerged body. Trans. Am. Geophys. Union 36, 5.Google Scholar