Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-08T04:12:53.167Z Has data issue: false hasContentIssue false

Lagrangian wall shear stress structures and near-wall transport in high-Schmidt-number aneurysmal flows

Published online by Cambridge University Press:  02 February 2016

Amirhossein Arzani
Affiliation:
Mechanical Engineering, University of California Berkeley, Berkeley, CA 94720, USA
Alberto M. Gambaruto
Affiliation:
Mechanical Engineering, University of Bristol, University Walk, Bristol BS8 1TR, UK
Guoning Chen
Affiliation:
Computer Science, University of Houston, Houston, TX 77204, USA
Shawn C. Shadden*
Affiliation:
Mechanical Engineering, University of California Berkeley, Berkeley, CA 94720, USA
*
Email address for correspondence: [email protected]

Abstract

The wall shear stress (WSS) vector field provides a signature for near-wall convective transport, and can be scaled to obtain a first-order approximation of the near-wall fluid velocity. The near-wall flow field governs mass transfer problems in convection-dominated open flows with high Schmidt number, in which case a flux at the wall will lead to a thin concentration boundary layer. Such near-wall transport is of particular interest in cardiovascular flows whereby haemodynamics can initiate and progress biological events at the vessel wall. In this study we consider mass transfer processes in pulsatile blood flow of abdominal aortic aneurysms resulting from complex WSS patterns. Specifically, the Lagrangian surface transport of a species released at the vessel wall was advected in forward and backward time based on the near-wall velocity field. Exposure time and residence time measures were defined to quantify accumulation of trajectories, as well as the time required to escape the near-wall domain. The effect of diffusion and normal velocity was investigated. The trajectories induced by the WSS vector field were observed to form attracting and repelling coherent structures that delineated species distribution inside the boundary layer consistent with exposure and residence time measures. The results indicate that Lagrangian WSS structures can provide a template for near-wall transport.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arzani, A., Les, A. S., Dalman, R. L. & Shadden, S. C. 2014a Effect of exercise on patient specific abdominal aortic aneurysm flow topology and mixing. Intl J. Numer. Methods Biomed. Engng 30 (2), 280295.Google Scholar
Arzani, A. & Shadden, S. C. 2012 Characterization of the transport topology in patient-specific abdominal aortic aneurysm models. Phys. Fluids 24 (8), 081901.Google Scholar
Arzani, A., Suh, G. Y., Dalman, R. L. & Shadden, S. C. 2014b A longitudinal comparison of hemodynamics and intraluminal thrombus deposition in abdominal aortic aneurysms. Am. J. Physiol. Heart Circ. Physiol. 307 (12), H1786H1795.Google Scholar
Bazilevs, Y., Calo, V. M., Tezduyar, T. E. & Hughes, T. J. R. 2007 YZ ${\it\beta}$ discontinuity capturing for advection-dominated processes with application to arterial drug delivery. Intl J. Numer. Meth. Fluids 54, 593608.Google Scholar
Brooks, A. N. & Hughes, T. J. R. 1982 Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Meth. Appl. Mech. Engng 32 (1), 199259.Google Scholar
Brücker, C. 2015 Evidence of rare backflow and skin-friction critical points in near-wall turbulence using micropillar imaging. Phys. Fluids 27 (3), 031705.Google Scholar
Cardesa, J. I., Monty, J. P., Soria, J. & Chong, M. S. 2014 Skin-friction critical points in wall-bounded flows. J. Phys.: Conf. Ser. 506, 012009.Google Scholar
Chen, G., Mischaikow, K., Laramee, R. S., Pilarczyk, P. & Zhang, E. 2007 Vector field editing and periodic orbit extraction using morse decomposition. IEEE Trans. Vis. Comput. Graphics 13 (4), 769785.Google Scholar
Dairay, T., Fortuné, V., Lamballais, E. & Brizzi, L. E. 2015 Direct numerical simulation of a turbulent jet impinging on a heated wall. J. Fluid Mech. 764, 362394.Google Scholar
Deplano, V., Knapp, Y., Bertrand, E. & Gaillard, E. 2007 Flow behaviour in an asymmetric compliant experimental model for abdominal aortic aneurysm. J. Biomech. 40, 24062413.Google Scholar
Duvernois, V., Marsden, A. L. & Shadden, S. C. 2013 Lagrangian analysis of hemodynamics data from FSI simulation. Intl J. Numer. Meth. Biomed. Engng 29 (4), 445461.CrossRefGoogle ScholarPubMed
El Hassan, M., Assoum, H. H., Martinuzzi, R., Sobolik, V., Abed-Meraim, K. & Sakout, A. 2013 Experimental investigation of the wall shear stress in a circular impinging jet. Phys. Fluids 25 (7), 077101.Google Scholar
Ethier, C. R. 2002 Computational modeling of mass transfer and links to atherosclerosis. Ann. Biomed. Engng 30 (4), 461471.Google Scholar
Finol, E. A. & Amon, C. H. 2001 Blood flow in abdominal aortic aneurysms: pulsatile flow hemodynamics. J. Biomech. Engng 123 (5), 474484.Google Scholar
Gambaruto, A. M., Doorly, D. J. & Yamaguchi, T. 2010 Wall shear stress and near-wall convective transport: comparisons with vascular remodelling in a peripheral graft anastomosis. J. Comput. Phys. 229 (14), 53395356.CrossRefGoogle Scholar
Ghosh, S., Leonard, A. & Wiggins, S. 1998 Diffusion of a passive scalar from a no-slip boundary into a two-dimensional chaotic advection field. J. Fluid Mech. 372, 119163.Google Scholar
Gopalakrishnan, S. S., Pier, B. & Biesheuvel, A. 2014 Dynamics of pulsatile flow through model abdominal aortic aneurysms. J. Fluid Mech. 758, 150179.Google Scholar
Hadžiabdić, M. & Hanjalić, K. 2008 Vortical structures and heat transfer in a round impinging jet. J. Fluid Mech. 596, 221260.CrossRefGoogle Scholar
Haller, G. 2015 Lagrangian coherent structures. Annu. Rev. Fluid Mech. 47, 137162.Google Scholar
Hubble, D. O., Vlachos, P. P. & Diller, T. E. 2013 The role of large-scale vortical structures in transient convective heat transfer augmentation. J. Fluid Mech. 718, 89115.Google Scholar
Lekien, F. & Ross, S. D 2010 The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds. Chaos 20 (1), 017505.CrossRefGoogle ScholarPubMed
Lenaers, P., Li, Q., Brethouwer, G., Schlatter, P. & Örlü, R. 2012 Rare backflow and extreme wall-normal velocity fluctuations in near-wall turbulence. Phys. Fluids 24 (3), 035110.Google Scholar
Les, A. S., Shadden, S. C., Figueroa, C. A., Park, J. M., Tedesco, M. M., Herfkens, R. J., Dalman, R. L. & Taylor, C. A. 2010 Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann. Biomed. Engng 38 (4), 12881313.Google Scholar
Logg, A., Mardal, K. A. & Wells, G. 2012 Automated Solution of Differential Equations by the Finite Element Method, vol. 84. Springer.Google Scholar
Ma, P., Li, X. & Ku, D. N. 1994 Heat and mass transfer in a separated flow region for high Prandtl and Schmidt numbers under pulsatile conditions. Intl J. Heat Mass Transfer. 37 (17), 27232736.Google Scholar
Marrero, V. L., Tichy, J. A., Sahni, O. & Jansen, K. E. 2014 Numerical study of purely viscous non-Newtonian flow in an abdominal aortic aneurysm. J. Biomech. Engng 136 (10), 101001.CrossRefGoogle Scholar
Nguyen, Q., Srinivasan, C. & Papavassiliou, D. V. 2015 Flow-induced separation in wall turbulence. Phys. Rev. E 91 (3), 033019.Google Scholar
Perry, A. E. & Chong, M. S. 1986 A series-expansion study of the Navier–Stokes equations with applications to three-dimensional separation patterns. J. Fluid Mech. 173, 207223.Google Scholar
Perry, A. E. & Chong, M. S. 1987 A description of eddying motions and flow patterns using critical-point concepts. Annu. Rev. Fluid Mech. 19 (1), 125155.CrossRefGoogle Scholar
Salsac, A. V., Sparks, S. R., Chomaz, J. M. & Lasheras, J. C. 2006 Evolution of the wall shear stresses during the progressive enlargement of symmetric abdominal aortic aneurysms. J. Fluid Mech. 560, 1952.Google Scholar
Shadden, S. C. 2011 Lagrangian coherent structures. In Transport and Mixing in Laminar Flows: from Microfluidics to Oceanic Currents, Wiley-VCH.Google Scholar
Shadden, S. C. & Arzani, A. 2015 Lagrangian postprocessing of computational hemodynamics. Ann. Biomed. Engng 43 (1), 4158.Google Scholar
Shadden, S. C. & Taylor, C. A. 2008 Characterization of coherent structures in the cardiovascular system. Ann. Biomed. Engng 36, 11521162.Google Scholar
Shariff, K., Pulliam, T. H. & Ottino, J. M. 1991 A dynamical systems analysis of kinematics in the time-periodic wake of a circular cylinder. Lect. Appl. Math 28, 613646.Google Scholar
Siggers, J. H. & Waters, S. L. 2008 Unsteady flows in pipes with finite curvature. J. Fluid Mech. 600, 133165.Google Scholar
Suh, G. Y., Les, A. S., Tenforde, A. S., Shadden, S. C., Spilker, R. L., Yeung, J. J., Cheng, C. P., Herfkens, R. J., Dalman, R. L. & Taylor, C. A. 2011a Quantification of particle residence time in abdominal aortic aneurysms using magnetic resonance imaging and computational fluid dynamics. Ann. Biomed. Engng 39, 864883.Google Scholar
Suh, G. Y., Tenforde, A. S., Shadden, S. C., Spilker, R. L., Cheng, C. P., Herfkens, R. J., Dalman, R. L. & Taylor, C. A. 2011b Hemodynamic changes in abdominal aortic aneurysms with increasing exercise intensity using MR exercise imaging and image-based computational fluid dynamics. Ann. Biomed. Engng 39, 21862202.Google Scholar
Surana, A., Grunberg, O. & Haller, G. 2006 Exact theory of three-dimensional flow separation. Part 1. Steady separation. J. Fluid Mech. 564, 57103.Google Scholar
Surana, A., Jacobs, G. B., Grunberg, O. & Haller, G. 2008 An exact theory of three-dimensional fixed separation in unsteady flows. Phys. Fluids 20 (10), 107101.Google Scholar
Truskey, G. A., Yuan, F. & Katz, D. F. 2004 Transport Phenomena in Biological Systems. Pearson/Prentice-Hall.Google Scholar
Zhang, E., Mischaikow, K. & Turk, G. 2006 Vector field design on surfaces. ACM Trans. Graph. 25 (4), 12941326.Google Scholar