Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T11:35:31.595Z Has data issue: false hasContentIssue false

Kinematics of vortex ring generated by a drop upon impacting a liquid pool

Published online by Cambridge University Press:  25 July 2019

Abhishek Saha*
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA
Yanju Wei
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Xiaoyu Tang
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
Chung K. Law
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
*
Email address for correspondence: [email protected]

Abstract

We herein report an experimental study on the morphological evolution of a vortex ring formed inside a liquid pool after it is impacted and penetrated by a coalescing drop of the same liquid. The dynamics of the penetrating vortex ring along with the deformation of the pool surface has been captured using simultaneous high-speed laser induced fluorescence and shadowgraph techniques. It is identified that the motion of such a vortex ring can be divided into three stages, during which inertial, capillary and viscous effects alternatingly play dominant roles to modulate the penetration process, resulting in linear, non-monotonic and decelerating motion in these three stages respectively. Furthermore, we also evaluate the relevant time and length scales of these three stages and subsequently propose a unified description of the downward motion of the penetrating vortex ring. Finally, we use the experimental data for a range of drop diameters and impact speeds to validate the proposed scaling.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aziz, S. D. & Chandra, S. 2000 Impact, recoil and splashing of molten metal droplets. Intl J. Heat Mass Transfer 43 (16), 28412857.Google Scholar
Beilharz, D., Guyon, A., Li, E. Q., Thoraval, M.-J. & Thoroddsen, S. T. 2015 Antibubbles and fine cylindrical sheets of air. J. Fluid Mech. 779, 87115.Google Scholar
Bird, J. C., de Ruiter, R., Courbin, L. & Stone, H. A. 2010 Daughter bubble cascades produced by folding of ruptured thin films. Nature 465, 759762.Google Scholar
van der Bos, A., van der Meulen, M.-J., Driessen, T., van den Berg, M., Reinten, H., Wijshoff, H., Versluis, M. & Lohse, D. 2014 Velocity profile inside piezoacoustic inkjet droplets in flight. Phys. Rev. A 1, 014004.Google Scholar
Castillo-Orozco, E., Davanlou, A., Choudhury, P. K. & Kumar, R. 2015 Droplet impact on deep liquid pools: Rayleigh jet to formation of secondary droplets. Phys. Rev. E 92 (5), 053022.Google Scholar
Chapman, D. S. & Critchlow, P. R. 1967 Formation of vortex rings from falling drops. J. Fluid Mech. 29 (1), 177185.Google Scholar
Deegan, R. D., Brunet, P. & Eggers, J. 2007 Complexities of splashing. Nonlinearity 21 (1), C1.Google Scholar
Dooley, B. S., Warncke, A. E., Gharib, M. & Tryggvason, G. 1997 Vortex ring generation due to the coalescence of a water drop at a free surface. Exp. Fluids 22 (5), 369374.Google Scholar
Gart, S., Mates, J. E., Megaridis, C. M. & Jung, S. 2015 Droplet impacting a cantilever: a leaf-raindrop system. Phys. Rev. A 3 (4), 044019.Google Scholar
Gilet, T. & Bourouiba, L. 2015 Fluid fragmentation shapes rain-induced foliar disease transmission. J. R. Soc. Interface 12 (104), 20141092.Google Scholar
Hsiao, M., Lichter, S. & Quintero, L. G. 1988 The critical Weber number for vortex and jet formation for drops impinging on a liquid pool. Phys. Fluids 31 (12), 35603562.Google Scholar
Josserand, C. & Thoroddsen, S. T. 2016 Drop impact on a solid surface. Annu. Rev. Fluid Mech. 48, 365391.Google Scholar
Kundu, P. & Cohen, I. 2008 Fluid Mechanics. Academic Press.Google Scholar
Leng, L. J. 2001 Splash formation by spherical drops. J. Fluid Mech. 427, 73105.Google Scholar
Michon, G.-J., Josserand, C. & Séon, T. 2017 Jet dynamics post drop impact on a deep pool. Phys. Rev. Fluids 2 (2), 023601.Google Scholar
Moreira, A. L. N., Moita, A. S. & Panao, M. R. 2010 Advances and challenges in explaining fuel spray impingement: How much of single droplet impact research is useful? Prog. Energy Combust. Sc. 36 (5), 554580.Google Scholar
Murphy, D. W., Li, C., dAlbignac, V., Morra, D. & Katz, J. 2015 Splash behaviour and oily marine aerosol production by raindrops impacting oil slicks. J. Fluid Mech. 780, 536577.Google Scholar
NASA, Glenn Research Center1999 Aerodynmics index: drag of a sphere.https://www.grc.nasa.gov/www/k-12/airplane/dragsphere.html.Google Scholar
Pan, K. L. & Law, C. K. 2007 Dynamics of droplet–film collision. J. Fluid. Mech. 587, 122.Google Scholar
Peck, B. & Sigurdson, L. 1994 The three-dimensional vortex structure of an impacting water drop. Phys. Fluids 6 (2), 564576.Google Scholar
Prosperetti, A., Crum, L. A. & Pumphrey, H. C. 1989 The underwater noise of rain. J. Geophys. Res. 94 (C3), 32553259.Google Scholar
Purvis, R. & Smith, F. T. 2005 Droplet impact on water layers: post-impact analysis and computations. Phil. Trans. R. Soc. Lond. A 363 (1830), 12091221.Google Scholar
Rein, M. 1993 Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12 (2), 61.Google Scholar
Rein, M. 1996 The transitional regime between coalescing and splashing drops. J. Fluid Mech. 306, 145165.Google Scholar
Rodriguez, F. & Mesler, R. 1988 The penetration of drop-formed vortex rings into pools of liquid. J. Colloid Interface Sci. 121 (1), 121129.Google Scholar
Shankar, P. N. & Kumar, M. 1995 Vortex rings generated by drops just coalescing with a pool. Phys. Fluids 7 (4), 737746.Google Scholar
Tang, X., Saha, A., Law, C. K. & Sun, C. 2016 Nonmonotonic response of drop impacting on liquid film: mechanism and scaling. Soft Matt. 12 (20), 45214529.Google Scholar
Tang, X., Saha, A., Law, C. K. & Sun, C. 2018 Bouncing-to-merging transition in drop impact on liquid film: role of liquid viscosity. Langmuir 34 (8), 26542662.Google Scholar
Tang, X., Saha, A., Law, C. K. & Sun, C. 2019 Bouncing drop on liquid film: dynamics of interfacial gas layer. Phys. Fluids 31 (1), 013304.Google Scholar
Thoraval, M.-J., Takehara, K., Etoh, T. G. & Thoroddsen, S. T. 2013 Drop impact entrapment of bubble rings. J. Fluid Mech. 724, 234258.Google Scholar
Thoroddsen, S. T. 2002 The ejecta sheet generated by the impact of a drop. J. Fluid Mech. 451, 373381.Google Scholar
Thoroddsen, S. T., Etoh, T. G. & Takehara, K. 2003 Air entrapment under an impacting drop. J. Fluid Mech. 478, 125134.Google Scholar
Tran, T., de Maleprade, H., Sun, C. & Lohse, D. 2013 Air entrainment during impact of droplets on liquid surfaces. J. Fluid Mech. 726, R3.Google Scholar
Weheliye, H., Dong, T. & Angeli, P. 2017 On the effect of surfactants on drop coalescence at liquid/liquid interfaces. Chem. Engng Sci. 161, 215227.Google Scholar
Weiss, D. A. & Yarin, A. L. 1999 Single drop impact onto liquid films: neck distortion, jetting, tiny bubble entrainment, and crown formation. J. Fluid Mech. 385, 229254.Google Scholar
Yarin, A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 38, 159192.Google Scholar
Zhao, H., Brunsvold, A. & Munkejord, S. T. 2011 Investigation of droplets impinging on a deep pool: transition from coalescence to jetting. Exp. Fluids 50 (3), 621635.Google Scholar
Supplementary material: File

Saha et al. supplementary material

Saha et al. supplementary material 1

Download Saha et al. supplementary material(File)
File 775.9 KB