Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T17:14:10.614Z Has data issue: false hasContentIssue false

Jetting and shear stress enhancement from cavitation bubbles collapsing in a narrow gap

Published online by Cambridge University Press:  10 December 2019

Silvestre Roberto Gonzalez-Avila*
Affiliation:
Institute for Physics, Faculty of Natural Sciences, Otto-von-Guericke University of Magdeburg, 39106Magdeburg, Germany
Anne Charlotte van Blokland
Affiliation:
Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OxfordOX3 7DQ, UK
Qingyun Zeng
Affiliation:
Institute for Physics, Faculty of Natural Sciences, Otto-von-Guericke University of Magdeburg, 39106Magdeburg, Germany Division of Physics and Applied Physics, School of Physical and Mathematical Sciences,Nanyang Technological University, 21 Nanyang Link, 637371, Republic of Singapore
Claus-Dieter Ohl*
Affiliation:
Institute for Physics, Faculty of Natural Sciences, Otto-von-Guericke University of Magdeburg, 39106Magdeburg, Germany Division of Physics and Applied Physics, School of Physical and Mathematical Sciences,Nanyang Technological University, 21 Nanyang Link, 637371, Republic of Singapore
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

The dynamics of bubbles near infinite boundaries has been studied in great detail. Once viscosity is accounted for, large wall shear stresses are generated upon jet impact and spreading. Although earlier works covered bubble dynamics in thin gaps and revealed rich fluid dynamics, viscosity and the resulting mechanical action on the surface have not been addressed. Here, we report experimental and numerical studies of cavitation bubbles expanding and collapsing inside a narrow gap. High-speed recordings and numerical simulations demonstrate an unexpected enhancement of the jetting velocity, a centre of mass translation and a dramatic increase of the wall shear stress. For the latter, we use computational simulations and present the results as spatio-temporal shear stress maps, while the bubble is recorded with high-speed photography. To test the implications of the high wall shear stress combined with the bubble translation, we conducted two experimental demonstrations. The first shows particulate removal on the distant wall, and the second cell detachment and molecule delivery through the cell membrane.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, D., Mao, X., Juluri, B. K. & Huang, T. J. 2009 A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles. Microfluid Nanofluid 7 (5), 727731.CrossRefGoogle Scholar
Avila, S. R. G., Song, C. & Ohl, C.-D. 2015 Fast transient microjets induced by hemispherical cavitation bubbles. J. Fluid Mech. 767, 3151.CrossRefGoogle Scholar
Bao, S., Thrall, B. D. & Miller, D. L. 1997 Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med. Biol. 23 (6), 953959.CrossRefGoogle ScholarPubMed
Batchelor, G. K. 2000 An Introduction to Fluid Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Blake, J. R., Taib, B. B. & Doherty, G. 1986 Transient cavities near boundaries. Part 1. Rigid boundary. J. Fluid Mech. 170, 479497.CrossRefGoogle Scholar
Brujan, E.-A., Noda, T., Ishigami, A., Ogasawara, T. & Takahira, H. 2018 Dynamics of laser-induced cavitation bubbles near two perpendicular rigid walls. J. Fluid Mech. 841, 2849.CrossRefGoogle Scholar
Brujan, E.-A., Takahira, H. & Ogasawara, T. 2019 Planar jets in collapsing cavitation bubbles. Exp. Therm. Fluid Sci. 101, 4861.CrossRefGoogle Scholar
Chahine, G. L. 1982 Experimental and asymptotic study of nonspherical bubble collapse. In Mechanics and Physics of Bubbles in Liquids, pp. 187197. Springer.CrossRefGoogle Scholar
Deshpande, M. D. & Vaishnav, R. N. 1982 Submerged laminar jet impingement on a plane. J. Fluid Mech. 114, 213236.CrossRefGoogle Scholar
Dijkink, R., Le Gac, S., Nijhuis, E., van den Berg, A., Vermes, I., Poot, A. & Ohl, C.-D. 2007 Controlled cavitation–cell interaction: trans-membrane transport and viability studies. Phys. Med. Biol. 53 (2), 375390.CrossRefGoogle ScholarPubMed
Dijkink, R. & Ohl, C.-D. 2008 Measurement of cavitation induced wall shear stress. Appl. Phys. Lett. 93 (25), 254107.CrossRefGoogle Scholar
Doinikov, A. A. & Bouakaz, A. 2010 Acoustic microstreaming around a gas bubble. J. Acoust. Soc. Am. 127 (2), 703709.CrossRefGoogle ScholarPubMed
Dollet, B., Marmottant, P. & Garbin, V. 2019 Bubble dynamics in soft and biological matter. Annu. Rev. Fluid Mech. 51, 331355.CrossRefGoogle Scholar
Glauert, M. B. 1956 The wall jet. J. Fluid Mech. 1 (6), 625643.CrossRefGoogle Scholar
Gonzalez-Avila, S. R., Klaseboer, E., Khoo, B. C. & Ohl, C.-D. 2011 Cavitation bubble dynamics in a liquid gap of variable height. J. Fluid Mech. 682, 241260.CrossRefGoogle Scholar
Han, B., Zhu, R., Guo, Z., Liu, L. & Ni, X.-W. 2018 Control of the liquid jet formation through the symmetric and asymmetric collapse of a single bubble generated between two parallel solid plates. Eur. J. Mech. (B/Fluids) 72, 114122.CrossRefGoogle Scholar
Horvat, D., Orthaber, U., Schille, J., Hartwig, L., Löschner, U., Vrečko, A. & Petkovšek, R. 2018 Laser-induced bubble dynamics inside and near a gap between a rigid boundary and an elastic membrane. Intl J. Multiphase Flow 100, 119126.CrossRefGoogle Scholar
Hsiao, C.-T., Choi, J.-K., Singh, S., Chahine, G. L., Hay, T. A., Ilinskii, Y. A., Zabolotskaya, E. A., Hamilton, M. F., Sankin, G., Yuan, F. et al. 2013 Modelling single-and tandem-bubble dynamics between two parallel plates for biomedical applications. J. Fluid Mech. 716, 137170.CrossRefGoogle ScholarPubMed
Ishida, H., Nuntadusit, C., Kimoto, H., Nakagawa, T. & Yamamoto, T.2001 Cavitation bubble behavior near solid boundaries. In Fourth International Symposium on Cavitation, California Institute of Technology, Pasadena, CA, USA, http://resolver.caltech.edu/cav2001:sessionA5.003.Google Scholar
Koukouvinis, P., Strotos, G., Zeng, Q., Gonzalez-Avila, S. R., Theodorakakos, A., Gavaises, M. & Ohl, C.-D. 2018 Parametric investigations of the induced shear stress by a laser-generated bubble. Langmuir 34 (22), 64286442.CrossRefGoogle ScholarPubMed
Krasovitski, B. & Kimmel, E. 2001 Gas bubble pulsation in a semiconfined space subjected to ultrasound. J. Acoust. Soc. Am. 109 (3), 891898.CrossRefGoogle Scholar
Kucherenko, V. V. & Shamko, V. V. 1986 Dynamics of electric-explosion cavities between two solid parallel walls. J. Appl. Mech. Tech. Phys. 27 (1), 112115.CrossRefGoogle Scholar
Lauterborn, W., Lechner, C., Koch, M. & Mettin, R. 2018 Bubble models and real bubbles: Rayleigh and energy-deposit cases in a Tait-compressible liquid. IMA J. Appl. Maths 83 (4), 556589.CrossRefGoogle Scholar
Lechner, C., Lauterborn, W., Koch, M. & Mettin, R. 2019 Fast, thin jets from bubbles expanding and collapsing in extreme vicinity to a solid boundary: a numerical study. Phys. Rev. Fluids 4, 021601.CrossRefGoogle Scholar
Liu, R. H., Yang, J., Pindera, M. Z., Athavale, M. & Grodzinski, P. 2002 Bubble-induced acoustic micromixing. Lab on a Chip 2 (3), 151157.CrossRefGoogle ScholarPubMed
Lutz, B. R., Chen, J. & Schwartz, D. T. 2006 Hydrodynamic tweezers: 1. Noncontact trapping of single cells using steady streaming microeddies. Analyt. Chem. 78 (15), 54295435.CrossRefGoogle ScholarPubMed
Maisonhaute, E., Brookes, B. A. & Compton, R. G. 2002a Surface acoustic cavitation understood via nanosecond electrochemistry. 2. The motion of acoustic bubbles. J. Phys. Chem. B 106 (12), 31663172.CrossRefGoogle Scholar
Maisonhaute, E., Prado, C., White, P. C. & Compton, R. G. 2002b Surface acoustic cavitation understood via nanosecond electrochemistry. Part III. Shear stress in ultrasonic cleaning. Ultrason. Sonochem. 9 (6), 297303.CrossRefGoogle Scholar
Marín, Á. G., Gelderblom, H., Lohse, D. & Snoeijer, J. H. 2011 Order-to-disorder transition in ring-shaped colloidal stains. Phys. Rev. Lett. 107 (8), 085502.CrossRefGoogle ScholarPubMed
Marmottant, P. & Hilgenfeldt, S. 2003 Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 423 (6936), 153.CrossRefGoogle ScholarPubMed
Miller, M. W., Miller, D. L. & Brayman, A. A. 1996 A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound Med. Biol. 22 (9), 11311154.CrossRefGoogle ScholarPubMed
Mohammadzadeh, M., Li, F. & Ohl, C.-D. 2017 Shearing flow from transient bubble oscillations in narrow gaps. Phys. Rev. Fluids 2 (1), 014301.CrossRefGoogle Scholar
Ng, K.-yun. & Liu, Y. 2002 Therapeutic ultrasound: its application in drug delivery. Med. Res. Rev. 22 (2), 204223.CrossRefGoogle ScholarPubMed
Ohl, C.-D., Arora, M., Dijkink, R., Janve, V. & Lohse, D. 2006a Surface cleaning from laser-induced cavitation bubbles. Appl. Phys. Lett. 89 (7), 074102.CrossRefGoogle Scholar
Ohl, C.-D., Arora, M., Ikink, R., De Jong, N., Versluis, M., Delius, M. & Lohse, D. 2006b Sonoporation from jetting cavitation bubbles. Biophys. J. 91 (11), 42854295.CrossRefGoogle Scholar
Philipp, A. & Lauterborn, W. 1998 Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75116.CrossRefGoogle Scholar
Popinet, S. & Zaleski, S. 2002 Bubble collapse near a solid boundary: a numerical study of the influence of viscosity. J. Fluid Mech. 464, 137163.CrossRefGoogle Scholar
Quah, E. W., Karri, B., Ohl, S.-W., Klaseboer, E. & Khoo, B. C. 2018 Expansion and collapse of an initially off-centered bubble within a narrow gap and the effect of a free surface. Intl J. Multiphase Flow 99, 6272.CrossRefGoogle Scholar
Rallabandi, B., Wang, C. & Hilgenfeldt, S. 2014 Two-dimensional streaming flows driven by sessile semicylindrical microbubbles. J. Fluid Mech. 739, 5771.CrossRefGoogle Scholar
Reuter, F. & Mettin, R. 2018 Electrochemical wall shear rate microscopy of collapsing bubbles. Phys. Rev. Fluids 3 (6), 063601.CrossRefGoogle Scholar
Riley, N. 2001 Steady streaming. Annu. Rev. Fluid Mech. 33 (1), 4365.CrossRefGoogle Scholar
Tagawa, Y. & Peters, I. R. 2018 Bubble collapse and jet formation in corner geometries. Phys. Rev. Fluids 3 (8), 081601.CrossRefGoogle Scholar
Tomita, Y. & Shima, A. 1986 Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J. Fluid Mech. 169, 535564.CrossRefGoogle Scholar
Vogel, A., Noack, J., Nahen, K., Theisen, D., Busch, S., Parlitz, U., Hammer, D. X., Noojin, G. D., Rockwell, B. A. & Birngruber, R. 1999 Energy balance of optical breakdown in water at nanosecond to femtosecond time scales. Appl. Phys. B 68 (2), 271280.CrossRefGoogle Scholar
Wang, C., Rallabandi, B. & Hilgenfeldt, S. 2013 Frequency dependence and frequency control of microbubble streaming flows. Phys. Fluids 25 (2), 022002.CrossRefGoogle Scholar
Zeng, Q., Gonzalez-Avila, S. R., Dijkink, R., Koukouvinis, P., Gavaises, M. & Ohl, C.-D. 2018a Wall shear stress from jetting cavitation bubbles. J. Fluid Mech. 846, 341355.CrossRefGoogle Scholar
Zeng, Q., Gonzalez-Avila, S. R., Ten Voorde, S. & Ohl, C.-D. 2018b Jetting of viscous droplets from cavitation-induced rayleigh–taylor instability. J. Fluid Mech. 846, 916943.CrossRefGoogle Scholar
Zwaan, E., Le Gac, S., Tsuji, K. & Ohl, C.-D. 2007 Controlled cavitation in microfluidic systems. Phys. Rev. Lett. 98, 254501.CrossRefGoogle ScholarPubMed
Supplementary material: File

Gonzalez-Avila et al. supplementary material

Gonzalez-Avila et al. supplementary material

Download Gonzalez-Avila et al. supplementary material(File)
File 26.9 KB