Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T06:54:48.687Z Has data issue: false hasContentIssue false

Isotropic polarization of compressible flows

Published online by Cambridge University Press:  16 December 2015

Jian-Zhou Zhu*
Affiliation:
Su-Cheng Centre for Fundamental and Interdisciplinary Sciences, Gaochun, Nanjing 211316, China Life and Chinese Medicine Study Center, Gui Lin Tang Laboratory, Yong’an, Fujian 366025, China
*
Email address for correspondence: [email protected]

Abstract

The helical absolute equilibrium of a compressible adiabatic flow presents not only polarization between two purely helical modes of opposite chiralities but also that between vortical and acoustic modes, deviating from the equipartition predicted by Kraichnan (J. Acoust. Soc. Am., vol. 27, 1955, pp. 438–441). Owing to the existence of the acoustic mode, even if all the Fourier modes of one chiral sector in the sharpened Helmholtz decomposition (Moses, SIAM J. Appl. Maths, vol. 21, 1971, pp. 114–130) are thoroughly truncated, leaving the system with positive-definite helicity and energy, negative temperature and the corresponding large-scale concentration of vortical modes are not allowed, unlike in the incompressible case.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramov, R. V., Kovacic, G. & Majda, A. 2003 Hamiltonian structure and statistically relevant conserved quantities for the truncated Burgers–Hopf equation. Commun. Pure Appl. Maths LVI, 00010046.Google Scholar
Bertoglio, J. P., Bataille, F. & Marion, J.-D. 2001 Two-point closures for weakly compressible turbulence. Phys. Fluids 13, 290310.Google Scholar
Biferale, L., Musacchio, S. & Toschi, F. 2013 Inverse energy cascade in three-dimensional isotropic turbulence. J. Fluid Mech. 730, 309327.Google Scholar
Biferale, L. & Titi, E. 2013 On the global regularity of a helical-decimated version of the 3D Navier–Stokes equations. J. Stat. Phys. 151, 1089.Google Scholar
Boyd, J. P. 1994 Hyperviscous shock layers and diffusion zones: monotonicity, spectral viscosity, and pseudospectral methods for very high order differential equations. J. Sci. Comput. 9, 81.Google Scholar
Cambon, C. & Godeferd, F. S. 1993 Inertial transfers in freely decaying rotating, stably stratified, and MHD turbulence. In Progress in Turbulence Research: Progress in Astronautics and Aeronautics (ed. Branover, H. & Unger, Y.), vol. 162, pp. 150168. AIAA.Google Scholar
Cambon, C. & Jacquin, L. 1989 Spectral approach to non-isotropic turbulence subjected to rotation. J. Fluid. Mech. 202, 295317.CrossRefGoogle Scholar
Frisch, U., Kurien, S., Pandit, R., Pauls, W., Ray, S., Wirth, A. & Zhu, J.-Z. 2008 Hyperviscosity, Galerkin turncation and bottleneck of turbulence. Phys. Rev. Lett. 101, 114501114504.Google Scholar
Frisch, U., Pomyalov, A., Procaccia, I. & Ray, S. Turbulence in noninteger dimensions by fractal Fourier decimation. Phys. Rev. Lett. 108, 074501.Google Scholar
Frisch, U., Pouquet, A., Leorat, J. & Mazure, A. 1975 Possibility of an inverse magnetic helicity cascade in magnetohydrodynamic turbulence. J. Fluid Mech. 68, 769778.CrossRefGoogle Scholar
Gallavotti, G. 2014 Nonequilibrium and Irreversibility. Springer.Google Scholar
Goldreich, P. & Sridhar, S. 1995 Toward a theory of interstellar turbulence. 2. Strong Alfvénic turbulence. Astrophys. J. 438, 763.Google Scholar
Hopf, E. 1952 Statistical hydromechanics and functional calculus. Rat. Mech. Anal. 1, 87123.Google Scholar
Kraichnan, R. H. 1955 On the statistical mechanics of an adiabatically compressible fluid. J. Acoust. Soc. Am. 27, 438441.CrossRefGoogle Scholar
Kraichnan, R. H. 1973 Helical turbulence and absolute equilibrium. J. Fluid Mech. 59, 745752.Google Scholar
Krstulovic, G., Cartes, C., Brachet, M. & Tirapegui, E. 2009 Generation and characterization of absolute equilibrium of compressible flows. Intl J. Bifurcation Chaos 19, 34453459.Google Scholar
Lee, T.-D. 1952 On some statistical properties of hydrodynamic and hydromagnetic fields. Q. Appl. Maths 10, 6974.Google Scholar
Mobbs, S. D. 1982 Variational principles for perfect and dissipative fluid flows. Proc. R. Soc. Lond. A 381, 457468.Google Scholar
Moffatt, H. K. 1969 The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35, 117129.Google Scholar
Moses, H. E. 1971 Eigenfunctions of the curl operator, rotationally invariant Helmholtz theorem and applications to electromagnetic theory and fluid mechanics. SIAM J. Appl. Maths 21, 114130.Google Scholar
Sagaut, P. & Cambon, C. 2008 Homogeneous Turbulence Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Sagaut, P. & Germano, M. 2005 On the filtering paradigm for LES of flows with discontinuities. J. Turbul. 6, 23.Google Scholar
Servidio, S., Matthaeus, W. H. & Carbone, V. 2008 Statistical properties of ideal three-dimensional Hall magnetohydrodynamics: the spectral structure of the equilibrium ensemble. Phys. Plasmas 15, 042314.CrossRefGoogle Scholar
She, Z.-S. & Jackson, E. 1993 Constrained Euler system for Navier–Stokes turbulence. Phys. Rev. Lett. 70, 12551258.Google Scholar
Shivamoggi, B. K. 1997 Equilibrium statistical mechanics of compressible isotropic turbulence. Europhys. Lett. 38, 657.Google Scholar
Tadmor, E. 1989 Convergence of spectral methods for nonlinear conservation laws. SIAM J. Numer. Anal. 26, 3044.Google Scholar
Waleffe, F. 1992 The nature of triad interactions in homogeneous turbulence. Phys. Fluids A 4, 350363.Google Scholar
Wang, J., Yang, Y., Shi, Y., Xiao, Z., He, X. & Chen, S. 2013 Cascade of kinetic energy in three-dimensional compressible turbulence. Phys. Rev. Lett. 110, 214505.Google Scholar
Zhu, J.-Z. 2014 Note on specific chiral ensembles of statistical hydrodynamics: ‘order function’ for transition of turbulence transfer scenarios. Phys. Fluids 26, 055109.Google Scholar
Zhu, J.-Z., Yang, W. & Zhu, G.-Y. 2014 Purely helical absolute equilibria and chirality of (magneto)fluid turbulence. J. Fluid. Mech. 739, 479501.Google Scholar