Hostname: page-component-5f745c7db-q8b2h Total loading time: 0 Render date: 2025-01-06T23:53:40.919Z Has data issue: true hasContentIssue false

Inviscid versus viscous instability mechanism of an air–water mixing layer

Published online by Cambridge University Press:  06 March 2015

Jean-Philippe Matas*
Affiliation:
Université Grenoble Alpes, LEGI, CNRS, F-38000 Grenoble, France
*
Email address for correspondence: [email protected]

Abstract

We study how confinement affects the viscous spatiotemporal instability of a two-phase mixing layer. We show that the absolute instability triggered by the inclusion of finite liquid and gas thicknesses leads to a good prediction of experimental data. In addition, this new mechanism provides a justification for the relevance of both simplified inviscid scaling laws and more sophisticated viscous approaches.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asmolov, E. 1999 The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J. Fluid Mech. 381, 6387.CrossRefGoogle Scholar
Ben Rayana, F.2007 Contribution à l’étude des instabilités interfaciales liquide–gaz en atomisation assistée et tailles de gouttes. PhD thesis, INP Grenoble, France.Google Scholar
Boeck, T. & Zaleski, S. 2005 Viscous versus inviscid instability of two-phase mixing layers with continuous velocity profile. Phys. Fluids 17, 032106.CrossRefGoogle Scholar
Boomkamp, P. & Miesen, R. 1996 Classification of instabilities in parallel two-phase flow. Intl J. Multiphase Flow 22, 6788.CrossRefGoogle Scholar
Charru, F. & Hinch, E. J. 2000 ‘Phase diagram’ of interfacial instabilities in a two-layer Couette flow and mechanism of the long-wave instability. J. Fluid Mech. 414, 195223.CrossRefGoogle Scholar
Dimotakis, P. E. 1986 Two-dimensional shear-layer entrainment. AIAA J. 24, 17911796.CrossRefGoogle Scholar
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71, 036601.CrossRefGoogle Scholar
Fuster, D., Matas, J.-P., Marty, S., Popinet, S., Hoepffner, J., Cartellier, A. & Zaleski, S. 2013 Instability regimes in the primary breakup region of planar coflowing sheets. J. Fluid Mech. 736, 150176.CrossRefGoogle Scholar
Healey, J. J. 2007 Enhancing the absolute instability of a boundary layer by adding a far-away plate. J. Fluid Mech. 579, 2961.CrossRefGoogle Scholar
Healey, J. J. 2009 Destabilizing effects of confinement on homogeneous mixing layers. J. Fluid Mech. 623, 241.CrossRefGoogle Scholar
Hinch, E. J. 1984 A note on the mechanism of the instability at the interface between two fluids. J. Fluid Mech. 144, 463465.CrossRefGoogle Scholar
Hooper, A. P. & Boyd, W. G. C. 1983 Shear-flow instability at the interface between two viscous fluids. J. Fluid Mech. 128, 507528.CrossRefGoogle Scholar
Hooper, A. P. & Boyd, W. G. C. 1987 Shear-flow instability due to a wall and a viscosity discontinuity at the interface. J. Fluid Mech. 179, 201225.CrossRefGoogle Scholar
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473537.CrossRefGoogle Scholar
Juniper, M. P. 2008 The effect of confinement on the stability of non-swirling round jet/wake flows. J. Fluid Mech. 605, 227252.CrossRefGoogle Scholar
Lefebvre, A. 1989 Atomization and Sprays. Hemisphere.Google Scholar
Marmottant, P. & Villermaux, E. 2004 On spray formation. J. Fluid Mech. 498, 73111.CrossRefGoogle Scholar
Matas, J.-P., Marty, S. & Cartellier, A. 2011 Experimental and analytical study of a gas–liquid mixing layer. Phys. Fluids 23, 094112.CrossRefGoogle Scholar
Matas, J.-P., Morris, J. F. & Guazzelli, E. 2009 Lateral force on a rigid sphere in large-inertia laminar pipe flow. J. Fluid Mech. 621, 5967.CrossRefGoogle Scholar
Otto, T., Rossi, M. & Boeck, T. 2013 Viscous instability of a sheared liquid–gas interface: dependence on fluid properties and basic velocity profile. Phys. Fluids 25, 032103.CrossRefGoogle Scholar
Rayleigh, Lord 1879 On the stability, or instability, of certain fluid motions. Proc. Lond. Math. Soc. 11, 5772.CrossRefGoogle Scholar
Raynal, L.1997 Instabilité et entraînement à l’interface d’une couche de mélange liquide–gaz. PhD thesis, Université Joseph Fourier Grenoble I, France.Google Scholar
Raynal, L., Villermaux, E., Lasheras, J. & Hopfinger, E. J.1997 Primary instability in liquid gas shear layers. In 11th Symposium on Turbulent Shear Flows, 7–10 September 1997, Grenoble, France, Vol. 3, pp. 27.1–27.5, OCLC 40626641, INP-CNRS-UJF.Google Scholar
Rees, S. J. & Juniper, M. P. 2010 The effect of confinement on the stability of viscous planar jets and wakes. J. Fluid Mech. 656, 309336.CrossRefGoogle Scholar
Yih, C. S. 1967 Instability due to viscous stratification. J. Fluid Mech. 27, 337352.CrossRefGoogle Scholar