Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-12-01T01:12:33.974Z Has data issue: false hasContentIssue false

Investigation of flow dynamics and heat transfer mechanism in turbulent Rayleigh–Bénard convection over multi-scale rough surfaces

Published online by Cambridge University Press:  28 April 2022

Mukesh Sharma
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
Krishan Chand
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
Arnab Kr. De*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
*
Email address for correspondence: [email protected]

Abstract

We present a two-dimensional numerical study of turbulent Rayleigh–Bénard convection with air as the working fluid over a multi-scale randomly roughened surface in a rectangular box of aspect ratio 2 over three decades of Rayleigh number ($10^8 \leq {\textit {Ra}} \leq 10^{11}$). With varied response of the roughness elements at different ${\textit {Ra}}$, enhanced heat transfer scaling ($\gamma =0.41$) is retained throughout the explored ${\textit {Ra}}$ range. The plume emission process is triggered from the taller roughness elements at a lower ${\textit {Ra}}$, while smaller elements contribute significantly at higher ${\textit {Ra}}$. Increased plume emission frequency compared to the smooth case is reflected from the enhanced volume fraction and thermal dissipation rate of plumes. The tip of the roughness elements exhibits the highest temperature and vertical velocity fluctuations, while washing out of the trapped fluid in the throat region holds the key to enhanced heat flux at higher ${\textit {Ra}}$. Increased localized pockets of fluid at higher ${\textit {Ra}}$ indicate better inter-scale energy transfer, which is reflected in higher energy content at all scales in the computed temperature spectra. The decomposition of the flow field into orthogonal modes reveals that heat transfer enhancement at higher ${\textit {Ra}}$ is associated with multiple small-scale structures. Owing to better energy transfer and intense localized fluctuations, modal distribution of energy is less severe for higher ${\textit {Ra}}$, and stable twin large-scale rolls do not favour an efficient heat transport process.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahlers, G., Bodenschatz, E. & He, X. 2014 Logarithmic temperature profiles of turbulent Rayleigh–Bénard convection in the classical and ultimate state for a Prandtl number of 0.8. J. Fluid Mech. 758, 436467.CrossRefGoogle Scholar
Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.CrossRefGoogle Scholar
Belkadi, M., Guislain, L., Sergent, A., Podvin, B., Chillá, F. & Salort, J. 2020 Experimental and numerical shadowgraph in turbulent Rayleigh–Bénard convection with a rough boundary: investigation of plumes. J. Fluid Mech. 895, A7.CrossRefGoogle Scholar
Berkooz, G., Holmes, P. & Lumley, J.L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539575.CrossRefGoogle Scholar
Bodenschatz, E., Pesch, W. & Ahlers, G. 2000 Recent developments in Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 32, 709778.CrossRefGoogle Scholar
Boffetta, G. & Ecke, R.E. 2012 Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44, 427451.CrossRefGoogle Scholar
Bolgiano, R. 1959 Turbulent spectra in a stably stratified atmosphere. J. Geophys. Res. 64, 22262229.CrossRefGoogle Scholar
Camussi, R. & Verzicco, R. 2004 Temporal statistics in high Rayleigh number convective turbulence. Eur. J. Mech. B/Fluids 23, 427442.CrossRefGoogle Scholar
Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., Wu, X.Z., Zaleski, S. & Zanetti, G. 1988 Scaling of hard thermal turbulence in Rayleigh–Bénard convection. J. Fluid Mech. 204, 130.CrossRefGoogle Scholar
Chand, K., Sharma, M. & De, A.K. 2021 Significance of near-wall dynamics in enhancement of heat flux for roughness aided turbulent Rayleigh–Bénard convection. Phys. Fluids 33, 065114.CrossRefGoogle Scholar
Chand, K., Sharma, M., Sharma, V.T. & De, A.K. 2019 Statistics of coherent structures in two-dimensional turbulent Rayleigh–Bénard convection. Phys. Fluids 31, 115112.CrossRefGoogle Scholar
Chilla, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35, 58.CrossRefGoogle ScholarPubMed
Ciliberto, S. & Laroche, C. 1999 Random roughness of boundary increases the turbulent convection scaling exponent. Phys. Rev. Lett. 82, 39984001.CrossRefGoogle Scholar
Corrsin, S. 1951 On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys. 22, 469473.CrossRefGoogle Scholar
De, A.K. 2018 A diffuse interface immersed boundary method for complex moving boundary problems. J. Comput. Phys. 366, 226251.CrossRefGoogle Scholar
De, A.K., Eswaran, V. & Mishra, P.K. 2018 Dynamics of plumes in turbulent Rayleigh–Bénard convection. Eur. J. Mech. B/Fluids 72, 164178.CrossRefGoogle Scholar
De, A.K. & Sarkar, S. 2020 Three-dimensional wake dynamics behind a tapered cylinder with large taper ratio. Phys. Fluids 32, 063604.CrossRefGoogle Scholar
De, A.K. & Sarkar, S. 2021 a Dependence of wake structure on pitching frequency behind a thin panel at $Re=1000$. J. Fluid Mech. 924, A33.CrossRefGoogle Scholar
De, A.K. & Sarkar, S. 2021 b Spatial wake transition past a thin pitching plate. Phys. Rev. E 104, 025106.CrossRefGoogle Scholar
Du, Y.B. & Tong, P. 1998 Enhanced heat transport in turbulent convection over a rough surface. Phys. Rev. Lett. 81, 987990.CrossRefGoogle Scholar
Du, Y.B. & Tong, P. 2000 Turbulent thermal convection in a cell with ordered rough boundaries. J. Fluid Mech. 407, 5784.CrossRefGoogle Scholar
Du, Y.B. & Tong, P. 2001 Temperature fluctuations in a convection cell with rough upper and lower surfaces. Phys. Rev. E 63, 046303.CrossRefGoogle Scholar
Emran, M.S. & Schumacher, J. 2012 Conditional statistics of thermal dissipation rate in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35, 108.CrossRefGoogle ScholarPubMed
Emran, M.S. & Shishkina, O. 2020 Natural convection in cylindrical containers with isothermal ring-shaped obstacles. J. Fluid Mech. 882, A3.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2001 Thermal convection for large Prandtl numbers. Phys. Rev. Lett. 86, 33163319.CrossRefGoogle ScholarPubMed
He, X., Funfshilling, D., Bodenschatz, E. & Ahlers, G. 2012 a Heat transport by turbulent Rayleigh–Bénard convection for ${\textit {Pr}} \simeq 0.8$ and $4\times 10^{ 11} \lesssim {\textit {Ra}} \lesssim 2\times 10^{14}$: ultimate-state transition for aspect ratio ${\varGamma } = 1.00$. New J. Phys. 14, 063030.CrossRefGoogle Scholar
He, X., Funfshilling, D., Nobach, H., Bodenschatz, E. & Ahlers, G. 2012 b Transition to the ultimate state of turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 108, 024502.CrossRefGoogle Scholar
Kaczorowski, M. & Xia, K.Q. 2013 Turbulent flow in the bulk of Rayleigh–Bénard convection: small-scale properties in a cubic cell. J. Fluid Mech. 722, 596617.CrossRefGoogle Scholar
Kandanoff, L.P. 2001 Turbulent heat flow: structures and scaling. Phys. Today 54, 3439.CrossRefGoogle Scholar
Kolmogorov, A.N. 1941 Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 16.Google Scholar
Kraichnan, R.H. 1962 Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5, 1374.CrossRefGoogle Scholar
Kunnen, R.P.J. & Clercx, H.J.H. 2014 Probing the energy cascade of convective turbulence. Phys. Rev. E 90, 063018.CrossRefGoogle ScholarPubMed
Kunnen, R.P.J., Clercx, H.J.H., Geurts, B.J., Bokhoven, L.J.A., Akkermans, R.A.D. & Verzicco, R. 2008 A numerical and experimental investigation of structure function scaling in turbulent Rayleigh–Bénard convection. Phys. Rev. E 77, 016302.CrossRefGoogle ScholarPubMed
Lepot, S., Aumaître, S. & Gallet, B. 2018 Radiative heating achieves the ultimate regime of thermal convection. Proc. Natl Acad. Sci. USA 115, 89378941.CrossRefGoogle ScholarPubMed
Lohse, D. & Toschi, F. 2003 Ultimate state of thermal convection. Phys. Rev. Lett. 90, 034502.CrossRefGoogle ScholarPubMed
Lohse, D. & Xia, K.Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.CrossRefGoogle Scholar
Lumley, J.L. & Poje, A. 1997 Low-dimensional models for flows with density fluctuations. Phys. Fluids 9 (7), 20232031.CrossRefGoogle Scholar
Malkus, W.V.R. 1954 The heat transport and spectrum of thermal turbulence. Proc. R. Soc. Lond. 225, 196212.Google Scholar
Niemela, J.J., Skrbek, L., Sreenivasan, K.R. & Donnelly, R.J. 2000 Turbulent convection at very high Rayleigh numbers. Nature 404, 837.CrossRefGoogle ScholarPubMed
Niemela, J.J. & Sreenivasan, K.R. 2010 Does confined turbulent convection ever attain the ‘asymptotic scaling’ with $1/2$ power? New J. Phys. 12, 115002.CrossRefGoogle Scholar
Obukhov, A.M. 1949 Structure of the temperature field in a turbulent flow. Izv. Akad. Nauk SSSR 13, 5869.Google Scholar
Obukhov, A.M. 1959 On the influence of Archimedean forces on the structure of the temperature field in a turbulent flow. Dokl. Akad. Nauk. SSR 125, 12461248.Google Scholar
Peter, S. & De, A.K. 2016 Wake instability modes for forced transverse oscillation of a sphere. Ocean Engng 115, 4859.CrossRefGoogle Scholar
Podvin, B. & Sergent, A. 2012 Proper orthogonal decomposition investigation of turbulent Rayleigh–Bénard convection in a rectangular cavity. Phys. Fluids 24, 105106.CrossRefGoogle Scholar
Podvin, B. & Sergent, A. 2015 A large scale investigation of wind reversal in a square Rayleigh–Bénard cell. J. Fluid Mech. 766, 172201.CrossRefGoogle Scholar
Podvin, B. & Sergent, A. 2017 Precursor for wind reversal in a square Rayleigh–Bénard cell. Phys. Rev. E 95, 013112.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Qiu, X.L., Xia, K.Q. & Tong, P. 2005 Experimental study of velocity boundary layer near a rough conducting surface in turbulent natural convection. J. Turbul. 6, N30.CrossRefGoogle Scholar
Richardson, L.F. 1922 Weather Prediction by Numerical Process. Cambridge University Press.Google Scholar
Roche, P.E., Castaing, B., Chabaud, B. & Hébral, B. 2001 Observation of the $\frac {1}2$ power law in Rayleigh–Bénard convection. Phys. Rev. E 63, 045303.CrossRefGoogle Scholar
Shen, Y., Tong, P. & Xia, K.Q. 1996 Turbulent convection over rough surfaces. Phys. Rev. Lett. 76, 908911.CrossRefGoogle ScholarPubMed
Shishkina, O. & Wagner, C. 2008 Analysis of sheet-like thermal plumes in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 599, 383404.CrossRefGoogle Scholar
Shishkina, O. & Wagner, C. 2011 Modelling the influence of wall roughness on heat transfer in thermal convection. J. Fluid Mech. 686, 568582.CrossRefGoogle Scholar
Shraiman, B.I. & Siggia, E.D. 1990 Heat transport in high-Rayleigh-number convection. Phys. Rev. A 42, 36503653.CrossRefGoogle ScholarPubMed
Sirovich, L. 1987 Turbulence and the dynamic of coherent structures. Part I: coherent structures. Q. Appl. Maths 45 (3), 561571.CrossRefGoogle Scholar
Soucasse, L., Podvin, B., Riviére, P. & Soufiani, A. 2019 Proper orthogonal decomposition analysis and modelling of large-scale flow reorientations in a cubic Rayleigh–Bénard cell. J. Fluid Mech. 881, 2350.CrossRefGoogle Scholar
Spiegel, E.A. 1963 A generalization of the mixing-length theory of turbulent convection. Astrophys. J. 138, 216225.CrossRefGoogle Scholar
Stringano, G., Pascazio, G. & Verzicco, R. 2006 Turbulent thermal convection over grooved plates. J. Fluid Mech. 557, 307336.CrossRefGoogle Scholar
Tilgner, A., Belmonte, A. & Libchaber, A. 1993 Temperature and velocity profiles of turbulent convection in water. Phys. Rev. E 47, R2253R2256.CrossRefGoogle ScholarPubMed
Toppaladoddi, S., Succi, S. & Wettlaufer, J.S. 2017 Roughness as a route to the ultimate regime of thermal convection. Phys. Rev. Lett. 118, 074503.CrossRefGoogle Scholar
Toppaladoddi, S., Wells, A.J., Doering, C.R. & Wettlaufer, J.S. 2021 Thermal convection over fractal surfaces. J. Fluid Mech. 907, A12.CrossRefGoogle Scholar
Urban, P., Hanzelka, P., Musilová, V., Králík, T., Mantia, M.L., Srnka, A. & Skrbek, L. 2014 Heat transfer in cryogenic helium gas by turbulent Rayleigh–Bénard convection in a cylindrical cell of aspect ratio 1. New J. Phys. 16, 053042.CrossRefGoogle Scholar
Verdoold, J., Tummers, M.J. & Hanjalić, K. 2009 Prime modes of fluid circulation in large-aspect-ratio turbulent Rayleigh–Bénard convection. Phys. Rev. E 80, 037301.CrossRefGoogle ScholarPubMed
Villermaux, E. 1998 Transfer at rough sheared interfaces. J. Fluid Mech. 81, 48594862.Google Scholar
Wang, Y., He, X. & Tong, P. 2019 Turbulent temperature fluctuations in a closed Rayleigh–Bénard convection cell. J. Fluid Mech. 874, 263284.CrossRefGoogle Scholar
Xie, Y.C. & Xia, K.Q. 2017 Turbulent thermal convection over rough plates with varying roughness geometries. J. Fluid Mech. 825, 573599.CrossRefGoogle Scholar
Zhang, Y., Huang, Y.X., Jiang, N., Liu, Y.L., Lu, Z.M., Qiu, X. & Zhou, Q. 2017 a Statistics of velocity and temperature fluctuations in two-dimensional Rayleigh–Bénard convection. Phys. Rev. E 96, 023105.CrossRefGoogle ScholarPubMed
Zhang, Y., Sun, C., Bao, Y. & Zhou, Q. 2017 b How surface roughness reduces heat transport for small roughness heights in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 836, R2.CrossRefGoogle Scholar
Zhou, Q., Sun, C. & Xia, K.Q. 2007 Morphological evolution of thermal plumes in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 98, 074501.CrossRefGoogle ScholarPubMed
Zhou, Q. & Xia, K. 2010 Physical and geometrical properties of thermal plumes in turbulent Rayleigh–Bénard convection. New J. Phys. 12, 075006.CrossRefGoogle Scholar
Zhu, X., Mathai, V., Stevens, R.J.A.M., Verzicco, R. & Lohse, D. 2018 Transition to the ultimate regime in two-dimensional Rayleigh–Bénard convection. Phys. Rev. Lett. 120, 144502.CrossRefGoogle Scholar
Zhu, X., Stevens, R.J.A.M., Shishkina, O., Verzicco, R. & Lohse, D. 2019 ${\textit {Nu}}\sim {\textit {Ra}}^{1/2}$ scaling enabled by multiscale wall roughness in Rayleigh–Bénard turbulence. J. Fluid Mech. 869, R4.CrossRefGoogle Scholar
Zhu, X., Stevens, R.J.A.M., Verzicco, R. & Lohse, D. 2017 Roughness facilitated local $1/2$ scaling does not imply the onset of the ultimate regime of thermal convection. Phys. Rev. Lett. 119, 154501.CrossRefGoogle Scholar