Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-30T19:45:54.373Z Has data issue: false hasContentIssue false

Interscale kinetic energy transfer in chemically reacting compressible isotropic turbulence

Published online by Cambridge University Press:  15 February 2021

Jian Teng
Affiliation:
Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Center for Complex Flows and Soft Matter Research, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong518055, PR China School of Power and Mechanical Engineering, Wuhan University, Wuhan430072, PR China Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou511458, PR China
Jianchun Wang*
Affiliation:
Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Center for Complex Flows and Soft Matter Research, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong518055, PR China Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou511458, PR China
Hui Li
Affiliation:
School of Power and Mechanical Engineering, Wuhan University, Wuhan430072, PR China
Shiyi Chen*
Affiliation:
Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Center for Complex Flows and Soft Matter Research, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong518055, PR China Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou511458, PR China
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

Interscale kinetic energy transfer in chemically reacting compressible isotropic turbulence is studied using numerical simulations at turbulent Mach numbers 0.2 and 0.8 for isothermal and exothermic reactions. At low turbulent Mach number $M_{t}=0.2$ for exothermic reaction, heat release greatly enhances expansion and compression motions, and induces the formation of shocklets which are not observed for isothermal reaction at the same turbulent Mach number. It is found that heat release through exothermic reactions enhances both the positive and the negative components of pressure–dilatation, as well as positive and negative components of subgrid-scale (SGS) kinetic energy flux, indicating an increase of both forward-scatter and backscatter of kinetic energy. The SGS flux of kinetic energy has a tendency to be from large scales to small scales. The solenoidal components of pressure–dilatation and SGS kinetic energy flux are minorly influenced by heat release of reaction, while the dilatational components of pressure–dilatation and SGS kinetic energy flux are significantly intensified by heat release at all length scales. Heat release enhances the kinetic energy of the dilatational mode through the pressure work, and leads to the increase of dilatational kinetic energy transfer from large scales to small scales through dilatational SGS flux, as well as the viscous dissipation of dilatational kinetic energy at small scales. Taylor Reynolds number has a minor influence on the qualitative statistical properties of interscale kinetic energy transfer terms.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aluie, H. 2011 Compressible turbulence: the cascade and its locality. Phys. Rev. Lett. 106, 174502.CrossRefGoogle ScholarPubMed
Aluie, H. 2013 Scale decomposition in compressible turbulence. Physica D 247 (1), 5465.CrossRefGoogle Scholar
Aluie, H., Li, S. & Li, H. 2012 Conservative cascade of kinetic energy in compressible turbulence. Astrophys. J. 751 (2), L29.CrossRefGoogle Scholar
Balakrishnan, G., Sarkar, S. & Williams, F. 1995 Direct numerical simulation of diffusion flames with large heat release in compressible homogeneous turbulence. In 31st Joint Propulsion Conference and Exhibit, pp. 1–15. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Balsara, D.S. & Shu, C.-W. 2000 Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160 (2), 405452.CrossRefGoogle Scholar
Barths, H., Hasse, C. & Peters, N. 2000 Computational fluid dynamics modelling of non-premixed combustion in direct injection diesel engines. Intl J. Engine Res. 1 (3), 249267.CrossRefGoogle Scholar
Cardesa, J.I., Vela-Martín, A., Dong, S. & Jiménez, J. 2015 The temporal evolution of the energy flux across scales in homogeneous turbulence. Phys. Fluids 27 (11), 111702.CrossRefGoogle Scholar
Chen, S. & Cao, N. 1997 Anomalous scaling and structure instability in three-dimensional passive scalar turbulence. Phys. Rev. Lett. 78, 34593462.CrossRefGoogle Scholar
Chen, X. & Li, X. 2013 Direct numerical simulation of chemical non-equilibrium turbulent flow. Chin. Phys. Lett. 30 (6), 064702.CrossRefGoogle Scholar
Domaradzki, J.A. & Saiki, E.M. 1997 Backscatter models for large-eddy simulations. Theor. Comput. Fluid Dyn. 9 (2), 7583.CrossRefGoogle Scholar
Donzis, D.A. & John, J.P. 2020 Universality and scaling in homogeneous compressible turbulence. Phys. Rev. Fluids 5, 084609.CrossRefGoogle Scholar
Donzis, D.A. & Maqui, A.F. 2016 Statistically steady states of forced isotropic turbulence in thermal equilibrium and non-equilibrium. J. Fluid Mech. 797, 181200.CrossRefGoogle Scholar
Duan, L. & Martín, M.P. 2011 Assessment of turbulence-chemistry interaction in hypersonic turbulent boundary layers. AIAA J. 49 (1), 172184.CrossRefGoogle Scholar
Eschenroeder, A.Q. 1964 Intensification of turbulence by chemical heat release. Phys. Fluids 7 (11), 17351743.CrossRefGoogle Scholar
Eyink, G.L. & Drivas, T.D. 2018 Cascades and dissipative anomalies in compressible fluid turbulence. Phys. Rev. X 8, 011022.Google Scholar
Gao, F. & Obrien, E.E. 1991 Direct numerical simulations of reacting flows in homogeneous turbulence. AIChE J. 37 (10), 14591470.CrossRefGoogle Scholar
Germano, M., Piomelli, U., Moin, P. & Cabot, W.H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3 (7), 17601765.CrossRefGoogle Scholar
Goto, S. 2008 A physical mechanism of the energy cascade in homogeneous isotropic turbulence. J. Fluid Mech. 605, 355366.CrossRefGoogle Scholar
Hamlington, P.E., Poludnenko, A.Y. & Oran, E.S. 2011 Interactions between turbulence and flames in premixed reacting flows. Phys. Fluids 23 (12), 125111.CrossRefGoogle Scholar
Hill, J.C. 1976 Homogeneous turbulent mixing with chemical reaction. Annu. Rev. Fluid Mech. 8 (1), 135161.CrossRefGoogle Scholar
Ishihara, T., Gotoh, T. & Kaneda, Y. 2009 Study of high–Reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41 (1), 165180.CrossRefGoogle Scholar
Jaberi, F.A. & James, S. 1999 Effects of chemical reaction on two-dimensional turbulence. J. Sci. Comput. 14 (1), 3172.CrossRefGoogle Scholar
Jaberi, F.A., Livescu, D. & Madnia, C.K. 2000 Characteristics of chemically reacting compressible homogeneous turbulence. Phys. Fluids 12 (5), 11891209.CrossRefGoogle Scholar
Jaberi, F.A. & Madnia, C.K. 1998 Effects of heat of reaction on homogeneous compressible turbulence. J. Sci. Comput. 13 (2), 201228.CrossRefGoogle Scholar
Jaberi, F.A., Miller, R.S., Madnia, C.K. & Givi, P. 1996 Non-Gaussian scalar statistics in homogeneous turbulence. J. Fluid Mech. 313 (1), 241282.CrossRefGoogle Scholar
Jagannathan, S. & Donzis, D.A. 2016 Reynolds and Mach number scaling in solenoidally-forced compressible turbulence using high-resolution direct numerical simulations. J. Fluid Mech. 789, 669707.CrossRefGoogle Scholar
Kida, S. & Orszag, S.A. 1990 Energy and spectral dynamics in forced compressible turbulence. J. Sci. Comput. 5 (2), 85125.CrossRefGoogle Scholar
Kida, S. & Orszag, S.A. 1992 Energy and spectral dynamics in decaying compressible turbulence. J. Sci. Comput. 7 (1), 134.CrossRefGoogle Scholar
Kim, J., Bassenne, M., Towery, C.A.Z., Hamlington, P.E., Poludnenko, A.Y. & Urzay, J. 2018 Spatially localized multi-scale energy transfer in turbulent premixed combustion. J. Fluid Mech. 848, 78116.CrossRefGoogle Scholar
Knaus, R. & Pantano, C. 2009 On the effect of heat release in turbulence spectra of non-premixed reacting shear layers. J. Fluid Mech. 626, 67109.CrossRefGoogle Scholar
Kuo, K.K. & Acharya, R. 2012 Applications of Turbulent and Multiphase Combustion. Wiley.CrossRefGoogle Scholar
Lee, S., Lele, S.K. & Moin, P. 1991 Eddy shocklets in decaying compressible turbulence. Phys. Fluids A 3 (4), 657664.CrossRefGoogle Scholar
Leonard, A.D. & Hill, J.C. 1992 Mixing and chemical reaction in sheared and nonsheared homogeneous turbulence. Fluid. Dyn. Res. 10, 273297.CrossRefGoogle Scholar
Leonard, A.D., Hill, J.C., Mahalingam, S. & Ferziger, J.H. 1988 Analysis of homogeneous turbulent reacting flows. In Studying Turbulence Using Numerical Simulation Databases, -II. Proc. 1988 Summer Program, Rep. CTR-S88 (ed. P. Moin, W.C. Reynolds & J. Kim), pp. 243–255. Center for Turbulence Research, Stanford University.Google Scholar
Leslie, D.C. & Quarini, G.L. 1979 The application of turbulence theory to the formulation of subgrid modelling procedures. J. Fluid Mech. 91 (1), 6591.CrossRefGoogle Scholar
Libby, P.A. & Williams, F.A. 1981 Turbulent Reacting Flows. Academic Press.Google Scholar
Livescu, D., Jaberi, F.A. & Madnia, C.K. 2002 The effects of heat release on the energy exchange in reacting turbulent shear flow. J. Fluid Mech. 450, 3566.CrossRefGoogle Scholar
Martín, M.P. & Candler, G.V. 1999 Subgrid-scale model for the temperature fluctuations in reacting hypersonic turbulent flows. Phys. Fluids 11 (9), 27652771.CrossRefGoogle Scholar
Martín, M.P., Piomelli, U. & Candler, G. 2000 Subgrid-scale models for compressible large-eddy simulations. Theor. Comput. Fluid Dyn. 13 (5), 361376.Google Scholar
Miura, H. & Kida, S. 1995 Acoustic energy exchange in compressible turbulence. Phys. Fluids 7 (7), 17321742.CrossRefGoogle Scholar
O'Brien, J., Towery, C.A.Z., Hamlington, P.E., Ihme, M., Poludnenko, A.Y. & Urzay, J. 2017 The cross-scale physical-space transfer of kinetic energy in turbulent premixed flames. Proc. Combust. Inst. 36 (2), 19671975.CrossRefGoogle Scholar
O'Brien, J., Urzay, J., Ihme, M., Moin, P. & Saghafian, A. 2014 Subgrid-scale backscatter in reacting and inert supersonic hydrogen–air turbulent mixing layers. J. Fluid Mech. 743, 554584.CrossRefGoogle Scholar
Paes, P. & Xuan, Y. 2018 Numerical investigation of turbulent kinetic energy dynamics in chemically-reacting homogeneous turbulence. Flow Turbul. Combust. 101 (3), 120.Google Scholar
Peters, N. 2000 Turbulent Combustion. Cambridge Monographs on Mechanics, vol. 1. Cambridge University Press.CrossRefGoogle Scholar
Pierre, S. & Claude, C. 2008 Homogeneous Turbulence Dynamics. Cambridge University Press.Google Scholar
Piomelli, U., Cabot, W.H., Moin, P. & Lee, S. 1991 Subgrid-scale backscatter in turbulent and transitional flows. Phys. Fluids A 3 (7), 17661771.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Praturi, D.S. & Girimaji, S.S. 2019 Effect of pressure–dilatation on energy spectrum evolution in compressible turbulence. Phys. Fluids 31 (5), 055114.CrossRefGoogle Scholar
Richardson, L.F. & Lynch, P. 2007 Weather Prediction by Numerical Process. Cambridge University Press.CrossRefGoogle Scholar
Sagaut, P. & Cambon, C. 2008 Compressible Homogeneous Isotropic Turbulence, pp. 273326. Cambridge University Press.CrossRefGoogle Scholar
Samtaney, R., Pullin, D.I. & Kosović, B. 2001 Direct numerical simulation of decaying compressible turbulence and shocklet statistics. Phys. Fluids 13 (5), 14151430.CrossRefGoogle Scholar
Teng, J., Wang, J., Li, H. & Chen, S. 2020 Spectra and scaling in chemically reacting compressible isotropic turbulence. Phys. Rev. Fluids 5, 084601.CrossRefGoogle Scholar
Towery, C., Poludnenko, A., Urzay, J., Obrien, J., Ihme, M. & Hamlington, P.E. 2016 Spectral kinetic energy transfer in turbulent premixed reacting flows. Phys. Rev. E 93 (5), 053115.CrossRefGoogle ScholarPubMed
Urzay, J., Ihme, M., Moin, P. & Saghafian, A. 2013 Backscatter of turbulent kinetic energy in chemically-reacting compressible flows. In Annual Research Briefs, pp. 123–139. Stanford University, sourced from Microsoft Academic, https://academic.microsoft.com/paper/2550236248.Google Scholar
Wang, J., Gotoh, T. & Watanabe, T. 2017 Spectra and statistics in compressible isotropic turbulence. Phys. Rev. Fluids 2 (1), 013403.CrossRefGoogle Scholar
Wang, J., Shi, Y., Wang, L., Xiao, Z., He, X.T. & Chen, S. 2011 Effect of shocklets on the velocity gradients in highly compressible isotropic turbulence. Phys. Fluids 23 (12), 125103.CrossRefGoogle Scholar
Wang, J., Shi, Y., Wang, L., Xiao, Z., He, X.T. & Chen, S. 2012 a Effect of compressibility on the small-scale structures in isotropic turbulence. J. Fluid Mech. 713, 588631.CrossRefGoogle Scholar
Wang, J., Shi, Y., Wang, L.-P., Xiao, Z., He, X.T. & Chen, S. 2012 b Scaling and statistics in three-dimensional compressible turbulence. Phys. Rev. Lett. 108, 214505.CrossRefGoogle ScholarPubMed
Wang, J., Wan, M., Chen, S. & Chen, S. 2018 a Kinetic energy transfer in compressible isotropic turbulence. J. Fluid Mech. 841, 581613.CrossRefGoogle Scholar
Wang, J., Wan, M., Chen, S., Xie, C. & Chen, S. 2018 b Effect of shock waves on the statistics and scaling in compressible isotropic turbulence. Phys. Rev. E 97, 043108.CrossRefGoogle ScholarPubMed
Wang, J., Wan, M., Chen, S., Xie, C., Zheng, Q., Wang, L.-P. & Chen, S. 2020 Effect of flow topology on the kinetic energy flux in compressible isotropic turbulence. J. Fluid Mech. 883, A11.CrossRefGoogle Scholar
Wang, J., Wang, L., Xiao, Z., Shi, Y. & Chen, S. 2010 A hybrid numerical simulation of isotropic compressible turbulence. J. Comput. Phys. 229 (13), 52575279.CrossRefGoogle Scholar
Wang, J., Yang, Y., Shi, Y., Xiao, Z., He, X.T. & Chen, S. 2013 a Cascade of kinetic energy in three-dimensional compressible turbulence. Phys. Rev. Lett. 110 (21), 214505.CrossRefGoogle ScholarPubMed
Wang, J., Yang, Y., Shi, Y., Xiao, Z., He, X.T. & Chen, S. 2013 b Statistics and structures of pressure and density in compressible isotropic turbulence. J. Turbul. 14 (6), 2137.CrossRefGoogle Scholar
Watanabe, T. & Gotoh, T. 2007 Inertial-range intermittency and accuracy of direct numerical simulation for turbulence and passive scalar turbulence. J. Fluid Mech. 590, 117146.CrossRefGoogle Scholar
Wu, K.-K., Chang, Y.-C., Chen, C.-H. & Chen, Y.-D. 2010 High-efficiency combustion of natural gas with 21–30% oxygen-enriched air. Fuel 89 (9), 24552462.CrossRefGoogle Scholar
Yasuda, T. & Vassilicos, J.C. 2018 Spatio-temporal intermittency of the turbulent energy cascade. J. Fluid Mech. 853, 235252.CrossRefGoogle Scholar