Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T09:38:44.437Z Has data issue: false hasContentIssue false

The inter-scale energy budget in a von Kármán mixing flow

Published online by Cambridge University Press:  18 May 2020

Anna N. Knutsen*
Affiliation:
Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
Pawel Baj
Affiliation:
Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
John M. Lawson
Affiliation:
Max Planck Institute of Dynamics and Self-Organisation, Göttingen 37077, Germany Department of Fluid Dynamics, University of Southampton, Southampton SO17 1BJ, UK
Eberhard Bodenschatz
Affiliation:
Max Planck Institute of Dynamics and Self-Organisation, Göttingen 37077, Germany
James R. Dawson
Affiliation:
Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
Nicholas A. Worth
Affiliation:
Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
*
Email address for correspondence: [email protected]

Abstract

A detailed assessment of the inter-scale energy budget of the turbulent flow in a von Kármán mixing tank has been performed based on two extensive experimental data sets. Measurements were performed at a Taylor microscale Reynolds number of $Re_{\unicode[STIX]{x1D706}}=199$ in the central region of the tank, using scanning particle image velocimetry (PIV) to fully resolve the velocity gradient tensor (VGT), and stereoscopic PIV for an expanded field of view. Following a basic flow characterisation, the Kármán–Howarth–Monin–Hill equation was used to investigate the inter-scale energy transfer. Access to the full VGT enabled the contribution of the different terms of the energy budget to be evaluated without any assumptions or approximations. The scale-space distribution of the dominant terms was also reported to assess the isotropy of the energy transfer. The results show a highly anisotropic distribution of energy transfer in scale space. Energy transfer was shown in a spherically averaged sense to be dominated at the small scales by the nonlinear inter-scale transfer term. However, in contrast to flows considered in previous studies, the local energy transfer is found to depend heavily on the linear contribution associated with the mean flow. Analysis of the scale-to-scale transfer of energy also allowed direct assessment of the classical picture of the energy cascade. It was found that while the inter-scale energy cascade driven by the turbulent fluctuations always proceeds in the forward direction, the total energy cascade driven by both the turbulent fluctuations and the mean flow exhibits significant inverse cascade regions, where energy is transferred from smaller to larger scales.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arad, I., L’vov, V. S. & Procaccia, I. 1999 Correlation functions in isotropic and anisotropic turbulence: the role of the symmetry group. Phys. Rev. E 59 (6), 67536765.Google ScholarPubMed
Batchelor, G. K. 1951 Note on a class of solutions of the Navier–Stokes equations representing steady rotationally-symmetric flow. Q. J. Mech. Appl. Maths 4 (1), 2941.CrossRefGoogle Scholar
Batchelor, G. K. 1969 Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids 12, 11233.CrossRefGoogle Scholar
Batchelor, G. K. & Taylor, G. I. 1946 The theory of axisymmetric turbulence. Proc. R. Soc. Lond. A 186 (1007), 480502.Google Scholar
Benedict, L. H. & Gould, R. D. 1998 Concerning time and length scale estimates made from burst-mode LDA autocorrelation measurements. Exp. Fluids 24 (3), 246253.CrossRefGoogle Scholar
Bickel, P. J. & Freedman, D. A. 1981 Some asymptotic theory for the bootstrap. Ann. Stat. 9 (6), 11961217.CrossRefGoogle Scholar
Biferale, L. & Procaccia, I. 2005 Anisotropy in turbulent flows and in turbulent transport. Phys. Rep. 414, 43164.CrossRefGoogle Scholar
Bonn, D., Couder, Y., van Dam, P. H. J. & Douady, S. 1993 From small scales to large scales in 3-dimensional turbulence: the effect of diluted polymers. Phys. Rev. E 47 (1), R28R31.Google Scholar
Bourgoin, M., Volk, R., Plihon, N., Augier, P., Odier, P. & Pinton, J. F. 2006 An experimental Bullard–von Kármán dynamo. New J. Phys. 8 (12), 329329.CrossRefGoogle Scholar
Cadot, O., Douady, S. & Couder, Y. 1995 Characterization of the low-pressure filaments in a three-dimensional turbulent shear flow. Phys. Fluids 630 (7), 630646.CrossRefGoogle Scholar
Campagne, A., Gallet, B., Moisy, F. & Cortet, P. P. 2014 Direct and inverse energy cascades in a forced rotating turbulence experiment. Phys. Fluids 26 (12), 125112.CrossRefGoogle Scholar
Carter, D. W. & Coletti, F. 2018 Small-scale structure and energy transfer in homogeneous turbulence. J. Fluid Mech. 854, 505543.CrossRefGoogle Scholar
Casciola, C. M., Gualtieri, P., Benzi, R. & Piva, R. 2003 Scale-by-scale budget and similarity laws for shear turbulence. J. Fluid Mech. 476, 105114.CrossRefGoogle Scholar
Casey, T. A., Sakakibara, J. & Thoroddsen, S. T. 2013 Scanning tomographic particle image velocimetry applied to a turbulent jet. Phys. Fluids 25 (2), 025102.CrossRefGoogle Scholar
Chang, K., Bewley, G. P. & Bodenschatz, E. 2012 Experimental study of the influence of anisotropy on the inertial scales of turbulence. J. Fluid Mech. 692, 464481.CrossRefGoogle Scholar
Cimarelli, A., De Angelis, E., Jiménez, J. & Casciola, C. M. 2016 Cascades and wall-normal fluxes in turbulent channel flows. J. Fluid Mech. 796, 417436.CrossRefGoogle Scholar
Cortet, P. P., Diribarne, P., Monchaux, R., Chiffaudel, A., Daviaud, F. & Dubrulle, B. 2009 Normalized kinetic energy as a hydrodynamical global quantity for inhomogeneous anisotropic turbulence. Phys. Fluids 21 (2), 025104.CrossRefGoogle Scholar
Danaila, L., Anselmet, F. & Antonia, R. A. 2002 An overview of the effect of large-scale inhomogeneities on small-scale turbulence. Phys. Fluids 14, 24752484.CrossRefGoogle Scholar
Danaila, L., Anselmet, F., Zhou, T. & Antonia, R. A. 1999 A generalization of Yaglom’s equation which accounts for the large-scale forcing in heated decaying turbulence. J. Fluid Mech. 391, 359372.CrossRefGoogle Scholar
Danaila, L., Anselmet, F., Zhou, T. & Antonia, R. A. 2001 Turbulent energy scale budget equations in a fully developed channel flow. J. Fluid Mech. 430, 87109.CrossRefGoogle Scholar
Davidson, P. 2004 Turbulence: An Introduction for Scientists and Engineers. Oxford University Press.Google Scholar
Debue, P., Kuzzay, D., Sawi, E. W., Daviaud, F., Dubrulle, B., Canet, L., Rossetto, V. & Wschebor, N. 2018a Experimental test of the crossover between the inertial and the dissipative range in a turbulent swirling flow. Phys. Rev. Fluids 3, 024602.CrossRefGoogle Scholar
Debue, P., Shukla, V., Kuzzay, D., Faranda, D., Saw, E.-W., Daviaud, F. & Dubrulle, B. 2018b Dissipation, intermittency, and singularities in incompressible turbulent flows. Phys. Rev. E 97, 053101.Google Scholar
Deissler, R. G. 1961 Effects of inhomogeneity and of shear flow in weak turbulent fields. Phys. Fluids 4 (10), 11871198.CrossRefGoogle Scholar
Deissler, R. G. 1981 Spectral energy transfer for inhomogeneous turbulence. Phys. Fluids 24 (10), 19111912.CrossRefGoogle Scholar
Dimotakis, P. E. 2005 Turbulent mixing. Annu. Rev. Fluid Mech. 37 (1), 329356.CrossRefGoogle Scholar
Dubrulle, B. 2019 Beyond Kolmogorov cascades. J. Fluid Mech. 867, P1.CrossRefGoogle Scholar
Efron, B. & Tibshirani, R. J. 1994 An Introduction to the Bootstrap. Chapman and Hall/CRC.CrossRefGoogle Scholar
Ganapathisubramani, B., Lakshminarasimhan, K. & Clemens, N. T. 2007 Determination of complete velocity gradient tensor by using cinematographic stereoscopic PIV in a turbulent jet. Exp. Fluids 42 (6), 923939.CrossRefGoogle Scholar
George, W. K. & Hussein, J. H. 1991 Locally axisymmetric turbulence. J. Fluid Mech. 233, 123.CrossRefGoogle Scholar
Godeferd, F. S. & Cambon, C. 1994 Detailed investigation of energy transfers in homogeneous stratified turbulence*. Phys. Fluids 6 (6), 20842100.CrossRefGoogle Scholar
Gomes-Fernandes, R., Ganapathisubramani, B. & Vassilicos, J. C. 2015 The energy cascade in near-field non-homogeneous non-isotropic turbulence. J. Fluid Mech. 771, 676705.CrossRefGoogle Scholar
Herbert, E., Daviaud, F., Dubrulle, B., Nazarenko, S. & Naso, A. 2012 Dual non-Kolmogorov cascades in a von Kármán flow. Europhys. Lett. 100 (4), 44003.CrossRefGoogle Scholar
Hill, R. J. 2002 Exact second-order structure-function relationships. J. Fluid Mech. 468, 317326.CrossRefGoogle Scholar
Jong, J. D., Cao, L., Woodward, S. H., Salazar, J. P. L. C., Collins, L. R. & Meng, H. 2009 Dissipation rate estimation from PIV in zero-mean isotropic turbulence. Exp. Fluids 46 (3), 499.Google Scholar
Jucha, J.2014 Time-symmetry breaking in turbulent multi-particle dispersion. PhD thesis, Georg-August University School of Science.CrossRefGoogle Scholar
Jucha, J., Xu, H., Pumir, A. & Bodenschatz, E. 2014 Time-reversal-symmetry breaking in turbulence. Phys. Rev. Lett. 113, 054501.CrossRefGoogle ScholarPubMed
von Karman, T. & Howarth, L. 1938 On the statistical theory of isotropic turbulence. Proc. R. Soc. Lond. A 164 (917), 192215.Google Scholar
Knutsen, A. N., Lawson, J. M., Dawson, J. R. & Worth, N. A. 2017 A laser sheet self-calibration method for scanning PIV. Exp. Fluids 58 (10), 147.CrossRefGoogle Scholar
Kolmogorov, A. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Dokl. Akad. Nauk SSSR 30, 301305.Google Scholar
Kolmogorov, A. N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13 (1), 8285.CrossRefGoogle Scholar
Kreuzahler, S., Schulz, D., Homann, H., Ponty, Y. & Grauer, R. 2014 Numerical study of impeller-driven von Kármán flows via a volume penalization method. New J. Phys. 16 (10), 103001.Google Scholar
Kurien, S., L’vov, V. S., Itamar, P. & Sreenivasan, K. R. 2000 Scaling structure of the velocity statistics in atmospheric boundary layers. Phys. Rev. E 61 (1), 407421.Google ScholarPubMed
Kuzzay, D., Faranda, D. & Dubrulle, B. 2015 Global versus local energy dissipation: the energy cycle of the turbulent von Kármán flow. Phys. Fluids 27 (7), 075105.CrossRefGoogle Scholar
Lamriben, C., Cortet, P. P. & Moisy, F. 2011 Direct measurements of anisotropic energy transfers in a rotating turbulence experiment. Phys. Rev. Lett. 107, 024503.CrossRefGoogle Scholar
Lawson, J. M.2015 A scanning PIV study of homogeneous turbulence at the dissipation scale. PhD thesis, University of Cambridge.Google Scholar
Lawson, J. M., Bodenschatz, E., Knutsen, A. N., Dawson, J. R. & Worth, N. A. 2019 Direct assessment of Kolmogorov’s first refined similarity hypothesis. Phys. Rev. Fluids 4, 022601.CrossRefGoogle Scholar
Lawson, J. M. & Dawson, J. R. 2014 A scanning PIV method for fine-scale turbulence measurements. Exp. Fluids 55 (12), 1857.CrossRefGoogle Scholar
Lawson, J. M. & Dawson, J. R. 2015 On velocity gradient dynamics and turbulent structure. J. Fluid Mech. 780, 6098.CrossRefGoogle Scholar
López-Caballero, M. & Burguete, J. 2013 Inverse cascades sustained by the transfer rate of angular momentum in a 3D turbulent flow. Phys. Rev. Lett. 110, 124501.CrossRefGoogle Scholar
Lumley, J. L. 1967 Similarity and the turbulent energy spectrum. Phys. Fluids 10 (4), 855858.CrossRefGoogle Scholar
Marié, L. & Daviaud, F. 2004 Experimental measurement of the scale-by-scale momentum transport budget in a turbulent shear flow. Phys. Fluids 16 (2), 457461.CrossRefGoogle Scholar
Monchaux, R., Ravelet, F., Dubrulle, B., Chiffaudel, A. & Daviaud, F. 2006 Properties of steady states in turbulent axisymmetric flows. Phys. Rev. Lett. 96, 124502.CrossRefGoogle ScholarPubMed
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics: Mechanics of Turbulence. MIT Press.Google Scholar
Mordant, N., Lévêque, E. & Pinton, J. F. 2004 Experimental and numerical study of the Lagrangian dynamics of high Reynolds turbulence. New J. Phys. 6, 116.CrossRefGoogle Scholar
Ni, R. & Xia, K. Q. 2013 Kolmogorov constants for the second-order structure function and the energy spectrum. Phys. Rev. E 87, 023002.Google ScholarPubMed
Nore, C., Castanon, Q. D., Cappanera, L. & Guermond, J. L. 2018 Numerical simulation of the von Kármán sodium dynamo experiment. J. Fluid Mech. 854, 164195.CrossRefGoogle Scholar
Novara, M. & Scarano, F. 2013 A particle-tracking approach for accurate material derivative measurements with tomographic PIV. Exp. Fluids 54, 1584.CrossRefGoogle Scholar
Oboukhov, A. M. 1962 Some specific features of atmospheric tubulence. J. Fluid Mech. 13 (1), 7781.CrossRefGoogle Scholar
Ouellette, N. T., Xu, H., Bourgoin, M. & Bodenschatz, E. 2006 An experimental study of turbulent relative dispersion models. New J. Phys. 8 (6), 109.CrossRefGoogle Scholar
Pao, Y. H. 1965 Structure of turbulent velocity and scalar fields at large wavenumbers. Phys. Fluids 8 (6), 1063.CrossRefGoogle Scholar
Podvin, B. & Dubrulle, B. 2018 Large-scale investigation of a turbulent bifurcation in the swirling von Kármán flow. Fluid Dyn. Res. 50 (6), 065508.CrossRefGoogle Scholar
Pope, S. B. 2005 Turbulent Flows. Cambridge University Press.Google Scholar
Porta, A. L., Voth, G. A., Moisy, F. & Bodenschatz, E. 2000 Using cavitation to measure statistics of low-pressure events in large-Reynolds-number turbulence. Phys. Fluids 12 (6), 14851496.CrossRefGoogle Scholar
Portela, F. A., Papadakis, G. & Vassilicos, J. C. 2017 The turbulence cascade in the near wake of a square prism. J. Fluid Mech. 825, 315352.CrossRefGoogle Scholar
Qu, B., Bos, W. & Naso, A. 2017 Direct numerical simulation of axisymmetric turbulence. Phys. Rev. Fluids 2, 094608.CrossRefGoogle Scholar
Ravelet, F., Marié, L., Chiffaudel, A. & Daviaud, F. 2004 Multistability and memory effect in a highly turbulent flow: experimental evidence for a global bifurcation. Phys. Rev. Lett. 93, 164501.CrossRefGoogle Scholar
Richardson, L. F. 1926 Atmospheric diffusion shown on a distance–neighbour graph. Proc. R. Soc. Lond. A 110 (756), 709737.Google Scholar
Romano, G. P., Antonia, R. A. & Zhou, T. 1999 Evaluation of LDA temporal and spatial velocity structure functions in a low Reynolds number turbulent channel flow. Exp. Fluids 27 (4), 368377.CrossRefGoogle Scholar
Shen, X. & Warhaft, Z. 2002 Longitudinal and transverse structure functions in sheared and unsheared wind-tunnel turbulence. Phys. Fluids 14 (1), 370381.CrossRefGoogle Scholar
Smith, L. M. & Waleffe, F. 1999 Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence. Phys. Fluids 11 (6), 16081622.CrossRefGoogle Scholar
Stewartson, K. 1953 On the flow between two rotating coaxial disks. Math. Proc. Camb. Phil. Soc. 49 (2), 333341.CrossRefGoogle Scholar
Thiesset, F., Danaila, L., Antonia, R. A. & Zhou, T. 2011 Scale-by-scale energy budgets which account for the coherent motion. J. Phys.: Conf. Ser. 318 (5), 052040.Google Scholar
Thoroddsen, S. T. 1995 Reevaluation of the experimental support for the Kolmogorov refined similarity hypothesis. Phys. Fluids 7 (4), 691693.CrossRefGoogle Scholar
Valente, P. & Vassilicos, J. 2015 The energy cascade in grid-generated non-equilibrium decaying turbulence. Phys. Fluids 27, 045103.CrossRefGoogle Scholar
Voth, G. A., Porta, A. L., Crawford, A. M., Aelxander, J. & Bodenschatz, E. 2002 Measurement of particle accelerations in fully developed turbulence. J. Fluid Mech. 469, 121160.CrossRefGoogle Scholar
Voth, G. A., Satyanarayan, K. & Bodenschatz, E. 1998 Lagrangian acceleration measurements at large Reynolds numbers. Phys. Fluids 2268 (9), 22682280.CrossRefGoogle Scholar
Wang, C., Gao, Q., Wei, R., Li, T. & Wang, J. 2017 Weighted divergence correction scheme and its fast implementation. Exp. Fluids 58, 114.CrossRefGoogle Scholar
Worth, N.2010 Tomographic PIV measurement of coherent dissipation scale structures. PhD thesis, University of Cambridge.Google Scholar
Worth, N. A. & Nickels, T. B. 2011 Time-resolved volumetric measurement of fine-scale coherent structures in turbulence. Phys. Rev. E 84 (2), 025301.Google ScholarPubMed
Yeung, P. K., Donzis, D. A. & Sreenivasan, K. R. 2012 Dissipation, enstrophy and pressure statistics in turbulence simulations at high Reynolds numbers. J. Fluid Mech. 700, 515.CrossRefGoogle Scholar
Zandbergen, P. J. & Dijkstra, D. 1987 Von Kármán swirling flows. Annu. Rev. Fluid Mech. 19 (1), 465491.CrossRefGoogle Scholar
Supplementary material: File

Knutsen et al. supplementary material

Knutsen et al. supplementary material

Download Knutsen et al. supplementary material(File)
File 3.4 MB