Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-01T03:54:03.008Z Has data issue: false hasContentIssue false

Internal wave attractors in three-dimensional geometries: trapping by oblique reflection

Published online by Cambridge University Press:  20 April 2018

G. Pillet
Affiliation:
Université de Lyon, ENS de Lyon, UCBL, CNRS, Laboratoire de Physique, 69342 Lyon, France
E. V. Ermanyuk
Affiliation:
Lavrentyev Institute of Hydrodynamics, av. Lavrentyev 15, Novosibirsk 630090, Russia Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
L. R. M. Maas
Affiliation:
Institute for Marine and Atmospheric Research, Utrecht University, 3584 CC Utrecht, The Netherlands
I. N. Sibgatullin
Affiliation:
Lomonosov Moscow State University, Moscow 119991, Russia
T. Dauxois*
Affiliation:
Université de Lyon, ENS de Lyon, UCBL, CNRS, Laboratoire de Physique, 69342 Lyon, France
*
Email address for correspondence: [email protected]

Abstract

We study experimentally the propagation of internal waves in two different three-dimensional (3D) geometries, with a special emphasis on the refractive focusing due to the 3D reflection of obliquely incident internal waves on a slope. Both studies are initiated by ray tracing calculations to determine the appropriate experimental parameters. First, we consider a 3D geometry, the classical set-up to get simple, two-dimensional (2D) parallelogram-shaped attractors in which waves are forced in a direction perpendicular to a sloping bottom. Here, however, the forcing is of reduced extent in the along-slope, transverse direction. We show how the refractive focusing mechanism explains the formation of attractors over the whole width of the tank, even away from the forcing region. Direct numerical simulations confirm the dynamics, emphasize the role of boundary conditions and reveal the phase shifting in the transverse direction. Second, we consider a long and narrow tank having an inclined bottom, to simply reproduce a canal. In this case, the energy is injected in a direction parallel to the slope. Interestingly, the wave energy ends up forming 2D internal wave attractors in planes that are transverse to the initial propagation direction. This focusing mechanism prevents indefinite transmission of most of the internal wave energy along the canal.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alford, M. H. 2003 Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature 423, 159162.CrossRefGoogle ScholarPubMed
Alford, M. H., MacKinnon, J. A., Zhao, Z., Pinkel, R., Klymak, J. & Peacock, T. 2007 Internal waves across the Pacific. Geophys. Res. Lett. 35, L15602.Google Scholar
Beckebanze, F., Brouzet, C., Sibgatullin, I. N. & Maas, L. R. M. 2018 Damping of quasi-two-dimensional internal wave attractors by rigid-wall friction. J. Fluid Mech. 841, 614635.CrossRefGoogle Scholar
Bordes, G.2012 Interactions non-linéaires d’ondes et tourbillons en milieu stratifié ou tournant. PhD thesis, ENS de Lyon.Google Scholar
Bourget, B., Dauxois, T., Joubaud, S. & Odier, P. 2013 Experimental study of parametric subharmonic instability for internal plane waves. J. Fluid Mech. 723, 120.CrossRefGoogle Scholar
Bourget, B., Scolan, H., Dauxois, T., Le Bars, M., Odier, P. & Joubaud, S. 2014 Finite-size effects in parametric subharmonic instability. J. Fluid Mech. 759, 739750.CrossRefGoogle Scholar
Brouzet, C., Ermanyuk, E., Joubaud, S., Pillet, G. & Dauxois, T. 2017 Internal wave attractors: different scenarios of instability. J. Fluid Mech. 811, 544568.CrossRefGoogle Scholar
Brouzet, C., Ermanyuk, E. V., Joubaud, S., Sibgatullin, I. N. & Dauxois, T. 2016a Energy cascade in internal wave attractors. Europhys. Lett. 113, 44001.CrossRefGoogle Scholar
Brouzet, C., Sibgatullin, I. N., Ermanyuk, E. V., Joubaud, S. & Dauxois, T. 2017 Scale effects in internal wave attractors. Phys. Rev. Fluids 2, 114803.CrossRefGoogle Scholar
Brouzet, C., Sibgatullin, I. N., Scolan, H., Ermanyuk, E. V. & Dauxois, T. 2016b Internal wave attractors examined using laboratory experiments and 3D numerical simulations. J. Fluid Mech. 793, 109131.CrossRefGoogle Scholar
Buhler, O. & Muller, C. J. 2007 Instability and focussing of internal waves in the deep ocean. J. Fluid Mech. 588, 128.CrossRefGoogle Scholar
Cyr, F., Bourgault, D. & Galbraith, P. S. 2015 Behavior and mixing of a cold intermediate layer near a sloping boundary. Ocean Dyn. 65, 357374.CrossRefGoogle Scholar
Dalziel, S. B., Hughes, G. O. & Sutherland, B. R. 2000 Whole field density measurements by ‘synthetic’ Schlieren. Exp. Fluids 28, 322335.CrossRefGoogle Scholar
Dauxois, T., Joubaud, S., Odier, P. & Venaille, A. 2018 Instability of internal gravity beams. Annu. Rev. Fluid Mech. 50, 131156.CrossRefGoogle Scholar
Dauxois, T. & Young, W. R. 1999 Near-critical refection of internal waves. J. Fluid Mech. 390, 271295.CrossRefGoogle Scholar
Drijfhout, S. & Maas, L. R. M. 2007 Impact of channel geometry and rotation on the trapping of internal tides. J. Phys. Oceanogr. 37, 27402763.CrossRefGoogle Scholar
Eriksen, C. C. 2005 Observations of internal wave reflection off sloping bottoms. J. Geophys. Res. 87, 21562202.Google Scholar
Fincham, A. & Delerce, G. 2000 Advanced optimization of correlation imaging velocimetry algorithms. Exp. Fluids 29 (S), S13S22.CrossRefGoogle Scholar
Fischer, P. F. 1997 An overlapping Schwarz method for spectral element solution of the incompressible Navier–Stokes equations. J. Comput. Phys. 133, 84101.CrossRefGoogle Scholar
Fischer, P. F. & Mullen, J. S. 2001 Filter-based stabilization of spectral element methods. C. R. Acad. Sci. Paris I 332, 265270.CrossRefGoogle Scholar
Gostiaux, L., Didelle, H., Mercier, S. & Dauxois, T. 2007 A novel internal waves generator. Exp. Fluids 42, 123130.CrossRefGoogle Scholar
Grisouard, N., Staquet, C. & Pairaud, I. 2008 Numerical simulation of a two-dimensional internal wave attractor. J. Fluid Mech. 614, 114.CrossRefGoogle Scholar
Guo, Y. & Holmes-Cerfon, M. 2016 Internal wave attractors over random, small-amplitude topography. J. Fluid Mech. 787, 148174.CrossRefGoogle Scholar
Hazewinkel, J., van Breevoort, P., Dalziel, S. & Maas, L. R. M. 2008 Observations on the wavenumber spectrum and evolution of an internal wave attractor. J. Fluid Mech. 598, 373382.CrossRefGoogle Scholar
Hazewinkel, J., Tsimitri, C., Maas, L. R. M. & Dalziel, S. 2010 Observations on the robustness of internal wave attractor to perturbations. Phys. Fluids 22, 107102.CrossRefGoogle Scholar
Hazewinkel, J., Maas, L. R. M. & Dalziel, S. B. 2011 Tomographic reconstruction of internal wave patterns in a paraboloid. Exp. Fluids 50, 247258.CrossRefGoogle Scholar
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N., Tung, C.C & Liu, H. H. 1998 The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 454, 903995.CrossRefGoogle Scholar
Kunze, E. & Llewellyn Smith, S. G. 2004 The role of small scale topography in turbulent mixing of the global ocean. Oceanography 17 (1), 5564.CrossRefGoogle Scholar
Lam, F. P. A. & Maas, L. R. M. 2008 Internal wave focusing revisited; a reanalysis and new theoretical links. Fluid Dyn. Res. 40, 95122.CrossRefGoogle Scholar
Maas, L. R. M. 2005 Wave attractors: linear yet non linear. Intl J. Bifurcation Chaos 15 (9), 27572782.CrossRefGoogle Scholar
Maas, L. R. M., Benielli, D., Sommeria, J. & Lam, F. P. A. 1997 Observations of an internal wave attractor in a confined stably stratified fluid. Nature 388, 557561.CrossRefGoogle Scholar
Maas, L. R. M. & Lam, F. P. A. 1995 Geometric focusing of internal waves. J. Fluid Mech. 300, 141.CrossRefGoogle Scholar
MacKinnon, J. A. & Winters, K. B. 2005 Subtropical catastrophe: significant loss of low-mode tidal energy at 28. 9° . Geophys. Res. Lett. 32, 19448007.CrossRefGoogle Scholar
Manders, A. M. M. & Maas, L. R. M. 2003 Observations of inertial waves in a rectangular basin with one sloping boundary. J. Fluid Mech. 493, 5988.CrossRefGoogle Scholar
Manders, A. M. M. & Maas, L. R. M. 2004 On the three-dimensional structure of the inertial wave field in a rectangular basin with one sloping boundary. Fluid Dyn. Res. 35, 121.CrossRefGoogle Scholar
Manders, A. M. M., Maas, L. R. M. & Gerkema, T. 2004 Observations of internal tides in the Mozambique Channel. J. Geophys. Res. 109, C12034.Google Scholar
Mercier, M. J., Garnier, N. B. & Dauxois, T. 2008 Refection and diffraction of internal waves analysed with the Hilbert transform. Phys. Fluids 20 (8), 086601.CrossRefGoogle Scholar
Mercier, M. J., Martinand, D., Mathur, M., Gostiaux, L., Peacock, T. & Dauxois, T. 2010 New wave generation. J. Fluid Mech. 657, 308334.CrossRefGoogle Scholar
Nash, J. D., Kunze, E., Toole, J. M. & Schmitt, R. W. 2004 Internal tide reflection and turbulent mixing on the continental slope. J. Phys. Oceanogr. 34, 11171134.2.0.CO;2>CrossRefGoogle Scholar
Ogilvie, G. I. 2005 Wave attractors and the asymptotic dissipation rate of tidal disturbances. J. Fluid Mech. 543, 1944.CrossRefGoogle Scholar
Oster, G. & Yamamoto, M. 1963 Density gradient techniques. Chem. Rev. 63 (3), 257268.CrossRefGoogle Scholar
Peacock, T., Mercier, M., Didelle, H., Viboud, S. & Dauxois, T. 2009 A laboratory study of low-mode internal tide scattering by finite-amplitude topography. Phys. Fluids 21, 121702.CrossRefGoogle Scholar
Phillips, O. M. 1963 Energy transfer in rotating fluids by reflection of inertial waves. Phys. Fluids 6, 513520.CrossRefGoogle Scholar
Phillips, O. M. 1966 The Dynamics of the Upper Ocean. Cambridge University Press.Google Scholar
Rabitti, A. & Maas, L. R. M. 2013 Meridional trapping and zonal propagation of inertial waves in a rotating fluid shell. J. Fluid Mech. 729, 445470.CrossRefGoogle Scholar
Rabitti, A. & Maas, L. R. M. 2014 Inertial wave rays in rotating spherical fluid domains. J. Fluid Mech. 758, 621654.CrossRefGoogle Scholar
Rainville, L. & Pinkel, R. 2006 Propagation of low-mode internal waves through the ocean. J. Phys. Oceanogr. 36, 12201236.CrossRefGoogle Scholar
Rieutord, M., Georgeot, B. & Valdettaro, L 2001 Inertial waves in a rotating spherical shell: attractors and asymptotic spectrum. J. Fluid Mech. 435, 103144.CrossRefGoogle Scholar
Rilling, G. & Flandrin, P. 2009 Sampling effects on the empirical mode decomposition. Adv. Adapt. Data Anal. 1 (1), 4359.CrossRefGoogle Scholar
Tabaei, A., Akylas, T. R. & Lamb, K. G. 2018 Nonlinear effects in reflecting and colliding internal wave beams. J. Fluid Mech. 526, 217243.CrossRefGoogle Scholar
Tropea, C., Yarin, A. & Foss, J. F. 1973 Handbook of Experimental Fluid Mechanics. Springer.Google Scholar
Wang, J., Ingram, R. G. & Mysak, L. A. 1991 Variability of internal tides in the Laurentian Channel. J. Geophys. Res. 96, 1685916875.CrossRefGoogle Scholar