Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-02T21:56:06.606Z Has data issue: false hasContentIssue false

Internal structure of vortex rings and helical vortices

Published online by Cambridge University Press:  16 November 2015

Francisco J. Blanco-Rodríguez
Affiliation:
Aix Marseille Université, CNRS, Centrale Marseille, IRPHE, UMR 7342, 13384 Marseille, France
Stéphane Le Dizès*
Affiliation:
Aix Marseille Université, CNRS, Centrale Marseille, IRPHE, UMR 7342, 13384 Marseille, France
Can Selçuk
Affiliation:
LIMSI, CNRS, Université Paris-Saclay, 91405 Orsay CEDEX, France Sorbonne Universités, UPMC Univ Paris 06, UFR d’Ingénierie, 75252 Paris CEDEX 05, France
Ivan Delbende
Affiliation:
LIMSI, CNRS, Université Paris-Saclay, 91405 Orsay CEDEX, France Sorbonne Universités, UPMC Univ Paris 06, UFR d’Ingénierie, 75252 Paris CEDEX 05, France
Maurice Rossi
Affiliation:
Sorbonne Universités, UPMC Univ Paris 06, UMR 7190, Institut Jean Le Rond d’Alembert, 75005, Paris, France CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, 75005, Paris, France
*
Email address for correspondence: [email protected]

Abstract

The internal structure of vortex rings and helical vortices is studied using asymptotic analysis and numerical simulations in cases where the core size of the vortex is small compared to its radius of curvature, or to the distance to other vortices. Several configurations are considered: a single vortex ring, an array of equally-spaced rings, a single helix and a regular array of helices. For such cases, the internal structure is assumed to be at leading order an axisymmetric concentrated vortex with an internal jet. A dipolar correction arises at first order and is shown to be the same for all cases, depending only on the local vortex curvature. A quadrupolar correction arises at second order. It is composed of two contributions, one associated with local curvature and another one arising from a non-local external 2-D strain field. This strain field itself is obtained by performing an asymptotic matching of the local internal solution with the external solution obtained from the Biot–Savart law. Only the amplitude of this strain field varies from one case to another. These asymptotic results are thereafter confronted with flow solutions obtained by direct numerical simulation (DNS) of the Navier–Stokes equations. Two different codes are used: for vortex rings, the simulations are performed in the axisymmetric framework; for helices, simulations are run using a dedicated code with built-in helical symmetry. Quantitative agreement is obtained. How these results can be used to theoretically predict the occurrence of both the elliptic instability and the curvature instability is finally addressed.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions. Dover.Google Scholar
Alekseenko, S. V., Kuibin, P. A. & Okulov, V. L. 2007 Theory of Concentrated Vortices: An Introduction. Springer.Google Scholar
Boersma, J. & Wood, D. H. 1999 On the self-induced motion of a helical vortex. J. Fluid Mech. 384, 263280.Google Scholar
Bolnot, H.2012 Instabilités des tourbillons hélicoïdaux: application au sillage des rotors. PhD thesis, Aix Marseille University.Google Scholar
Bolnot, H., Le Dizès, S. & Leweke, T. 2014 Spatio-temporal development of the pairing instability in an infinite array of vortex rings. Fluid Dyn. Res. 46, 061405.Google Scholar
Callegari, A. J. & Ting, L. 1978 Motion of a curved vortex filament with decaying vortical core and axial velocity. SIAM J. Appl. Maths 35, 148175.CrossRefGoogle Scholar
Delbende, I., Piton, B. & Rossi, M. 2015 Merging of two helical vortices. Eur. J. Mech. (B/Fluids) 49, 363372.Google Scholar
Delbende, I., Rossi, M. & Daube, O. 2012a DNS of flows with helical symmetry. J. Theor. Comput. Fluid Dyn. 26, 141160.Google Scholar
Delbende, I., Rossi, M. & Piton, B. 2012b Direct numerical simulation of helical vortices. Intl J. Engng Systems Model. Simul. 4, 94101.Google Scholar
Eloy, C. & Le Dizès, S. 1999 Three-dimensional instability of Burgers and Lamb-Oseen vortices in a strain field. J. Fluid Mech. 378, 145166.CrossRefGoogle Scholar
Fukumoto, Y. 2002 Higher-order asymptotic theory for the velocity field induced by an inviscid vortex ring. Fluid Dyn. Res. 30, 6795.Google Scholar
Fukumoto, Y. & Hattori, Y. 2005 Curvature instability of a vortex ring. J. Fluid Mech. 526, 77115.Google Scholar
Fukumoto, Y. & Miyazaki, T. 1991 Three-dimensional distorsions of a vortex filament with axial velocity. J. Fluid Mech. 222, 369416.Google Scholar
Fukumoto, Y. & Moffatt, H. K. 2000 Motion and expansion of a viscous vortex ring. Part 1. A higher-order asymptotic formula for the velocity. J. Fluid Mech. 417, 145.Google Scholar
Fukumoto, Y. & Okulov, V. L. 2005 The velocity induced by a helical vortex tube. Phys. Fluids 17, 107101.CrossRefGoogle Scholar
Hardin, J. C. 1982 The velocity field induced by a helical vortex filament. Phys. Fluids 25 (11), 19491952.Google Scholar
Hattori, Y. & Fukumoto, Y. 2003 Short-wavelength stability analysis of thin vortex rings. Phys. Fluids 15, 31513163.CrossRefGoogle Scholar
Hattori, Y. & Fukumoto, Y. 2009 Short-wavelength stability analysis of a helical vortex tube. Phys. Fluids 21, 014104.Google Scholar
Hattori, Y. & Fukumoto, Y. 2014 Modal stability analysis of a helical vortex tube with axial flow. J. Fluid Mech. 738, 222249.Google Scholar
Kerswell, R. R. 2002 Elliptical instability. Annu. Rev. Fluid Mech. 34, 83113.Google Scholar
Kuibin, P. A. & Okulov, V. L. 1998 Self-induced motion and asymptotic expansion of the velocity field in the vicinity of a helical vortex filament. Phys. Fluids 10, 607614.CrossRefGoogle Scholar
Lacaze, L., Ryan, K. & Le Dizès, S. 2007 Elliptic instability in a strained batchelor vortex. J. Fluid Mech. 577, 341361.Google Scholar
Lamb, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press.Google Scholar
Le Dizès, S. & Verga, A. 2002 Viscous interaction of two co-rotating vortices before merging. J. Fluid Mech. 467, 389410.CrossRefGoogle Scholar
Levy, H. & Forsdyke, A. G. 1927 The stability of an infinite system of circular vortices. Proc. R. Soc. Lond. A 114, 594604.Google Scholar
Leweke, T., Quaranta, H. U., Bolnot, H., Blanco-Rodriguez, F. J. & Le Dizès, S. 2014 Long- and short-wave instabilities in helical vortices. J. Phys.: Conf. Ser. 524, 012154.Google Scholar
Moffatt, H. K., Kida, S. & Ohkitani, K. 1994 Stretched vortices – the sinews of turbulence; large-Reynolds-number asymptotics. J. Fluid Mech. 259, 241264.Google Scholar
Moore, D. W. & Saffman, P. G. 1972 The motion of a vortex filament with axial flow. Phil. Trans. R. Soc. Lond. A 272, 403429.Google Scholar
Okulov, V. L. 2004 On the stability of multiple helical vortices. J. Fluid Mech. 521, 319342.Google Scholar
Ricca, R. L. 1994 The effect of torsion on the motion of a helical vortex filament. J. Fluid Mech. 273, 241259.Google Scholar
Roy, C., Leweke, T., Thompson, M. C. & Hourigan, K. 2011 Experiments on the elliptic instability in vortex pairs with axial core flow. J. Fluid Mech. 677, 383416.Google Scholar
Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.Google Scholar
Ting, L. & Tung, C. 1965 Motion and decay of a vortex in a nonuniform stream. Phys. Fluids 8, 1039.Google Scholar
Widnall, S. E. 1972 The stability of a helical vortex filament. J. Fluid Mech. 54, 641663.CrossRefGoogle Scholar
Widnall, S. E., Bliss, D. & Tsai, C.-Y. 1974 The instability of short waves on a vortex ring. J. Fluid Mech. 66, 3547.Google Scholar
Widnall, S. E., Bliss, D. B. & Zalay, Y. 1971 Theoretical and experimental study of the stability of a vortex pair. In Aircraft Wake Turbulence and Its Detection (ed. Olsen, J. H., Goldburg, A. & Rogers, M.), pp. 305338. Springer.Google Scholar
Widnall, S. E. & Tsai, C.-Y. 1977 The instability of the thin vortex ring of constant vorticity. Phil. Trans. R. Soc. Lond. A 287, 273305.Google Scholar